scholarly journals Using Cryo-EM to Map Small Ligands on Dynamic Metabolic Enzymes: Studies with Glutamate Dehydrogenase

2016 ◽  
Vol 89 (6) ◽  
pp. 645-651 ◽  
Author(s):  
Mario J. Borgnia ◽  
Soojay Banerjee ◽  
Alan Merk ◽  
Doreen Matthies ◽  
Alberto Bartesaghi ◽  
...  
2016 ◽  
Vol 113 (11) ◽  
pp. E1526-E1535 ◽  
Author(s):  
Xue Bessie Su ◽  
Lorraine Pillus

Growing evidence demonstrates that metabolism and chromatin dynamics are not separate processes but that they functionally intersect in many ways. For example, the lysine biosynthetic enzyme homocitrate synthase was recently shown to have unexpected functions in DNA damage repair, raising the question of whether other amino acid metabolic enzymes participate in chromatin regulation. Using an in silico screen combined with reporter assays, we discovered that a diverse range of metabolic enzymes function in heterochromatin regulation. Extended analysis of the glutamate dehydrogenase 1 (Gdh1) revealed that it regulates silent information regulator complex recruitment to telomeres and ribosomal DNA. Enhanced N-terminal histone H3 proteolysis is observed in GDH1 mutants, consistent with telomeric silencing defects. A conserved catalytic Asp residue is required for Gdh1’s functions in telomeric silencing and H3 clipping. Genetic modulation of α-ketoglutarate levels demonstrates a key regulatory role for this metabolite in telomeric silencing. The metabolic activity of glutamate dehydrogenase thus has important and previously unsuspected roles in regulating chromatin-related processes.


Author(s):  
Kuixiong Gao ◽  
Randal E. Morris ◽  
Bruce F. Giffin ◽  
Robert R. Cardell

Several enzymes are involved in the regulation of anabolic and catabolic pathways of carbohydrate metabolism in liver parenchymal cells. The lobular distribution of glycogen synthase (GS), phosphoenolpyruvate carboxykinase (PEPCK) and glycogen phosphorylase (GP) was studied by immunocytochemistry using cryosections of normal fed and fasted rat liver. Since sections of tissue embedded in polyethylene glycol (PEG) show good morphological preservation and increased detectability for immunocytochemical localization of antigenic sites, and semithin sections of Visio-Bond (VB) embedded tissue provide higher resolution of cellular structure, we applied these techniques and immunogold-silver stain (IGSS) for a more accurate localization of hepatic carbohydrate metabolic enzymes.


2016 ◽  
Vol 17 (13) ◽  
pp. 1455-1470 ◽  
Author(s):  
Tomas Majtan ◽  
Angel L. Pey ◽  
June Ereño-Orbea ◽  
Luis Alfonso Martínez-Cruz ◽  
Jan P. Kraus

Sign in / Sign up

Export Citation Format

Share Document