State-Dependent Mibefradil Block of Na+ Channels

2004 ◽  
Vol 66 (6) ◽  
pp. 1652-1661 ◽  
Author(s):  
Megan M. McNulty ◽  
Dorothy A. Hanck
Science ◽  
1994 ◽  
Vol 265 (5179) ◽  
pp. 1724-1728 ◽  
Author(s):  
D. Ragsdale ◽  
J. McPhee ◽  
T Scheuer ◽  
W. Catterall

2009 ◽  
Vol 229 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Ging Kuo Wang ◽  
Joanna Calderon ◽  
Shiow-Jiin Jaw ◽  
Sho-Ya Wang

2003 ◽  
Vol 122 (3) ◽  
pp. 365-374 ◽  
Author(s):  
Ging Kuo Wang ◽  
Corinna Russell ◽  
Sho-Ya Wang

The antiarrhythmic agent flecainide appears beneficial for painful congenital myotonia and LQT-3/ΔKPQ syndrome. Both diseases manifest small but persistent late Na+ currents in skeletal or cardiac myocytes. Flecainide may therefore block late Na+ currents for its efficacy. To investigate this possibility, we characterized state-dependent block of flecainide in wild-type and inactivation-deficient rNav1.4 muscle Na+ channels (L435W/L437C/A438W) expressed with β1 subunits in Hek293t cells. The flecainide-resting block at −140 mV was weak for wild-type Na+ channels, with an estimated 50% inhibitory concentration (IC50) of 365 μM when the cell was not stimulated for 1,000 s. At 100 μM flecainide, brief monitoring pulses of +30 mV applied at frequencies as low as 1 per 60 s, however, produced an ∼70% use-dependent block of peak Na+ currents. Recovery from this use-dependent block followed an exponential function, with a time constant over 225 s at −140 mV. Inactivated wild-type Na+ channels interacted with flecainide also slowly at −50 mV, with a time constant of 7.9 s. In contrast, flecainide blocked the open state of inactivation-deficient Na+ channels potently as revealed by its rapid time-dependent block of late Na+ currents. The IC50 for flecainide open-channel block at +30 mV was 0.61 μM, right within the therapeutic plasma concentration range; on-rate and off-rate constants were 14.9 μM−1s−1 and 12.2 s−1, respectively. Upon repolarization to −140 mV, flecainide block of inactivation-deficient Na+ channels recovered, with a time constant of 11.2 s, which was ∼20-fold faster than that of wild-type counterparts. We conclude that flecainide directly blocks persistent late Na+ currents with a high affinity. The fast-inactivation gate, probably via its S6 docking site, may further stabilize the flecainide-receptor complex in wild-type Na+ channels.


2000 ◽  
Vol 93 (4) ◽  
pp. 1022-1033 ◽  
Author(s):  
Carla Nau ◽  
Sho-Ya Wang ◽  
Gary R. Strichartz ◽  
Ging Kuo Wang

Background S(-)-bupivacaine reportedly exhibits lower cardiotoxicity but similar local anesthetic potency compared with R(+)-bupivacaine. The bupivacaine binding site in human heart (hH1) Na+ channels has not been studied to date. The authors investigated the interaction of bupivacaine enantiomers with hH1 Na+ channels, assessed the contribution of putatively relevant residues to binding, and compared the intrinsic affinities to another isoform, the rat skeletal muscle (mu1) Na+ channel. Methods Human heart and mu1 Na+ channel alpha subunits were transiently expressed in HEK293t cells and investigated during whole cell voltage-clamp conditions. Using site-directed mutagenesis, the authors created point mutations at positions hH1-F1760, hH1-N1765, hH1-Y1767, and hH1-N406 by introducing the positively charged lysine (K) or the negatively charged aspartic acid (D) and studied their influence on state-dependent block by bupivacaine enantiomers. Results Inactivated hH1 Na+ channels displayed a weak stereoselectivity with a stereopotency ratio (+/-) of 1.5. In mutations hH1-F1760K and hH1-N1765K, bupivacaine affinity of inactivated channels was reduced by approximately 20- to 40-fold, in mutation hH1-N406K by approximately sevenfold, and in mutations hH1-Y1767K and hH1-Y1767D by approximately twofold to threefold. Changes in recovery of inactivated mutant channels from block paralleled those of inactivated channel affinity. Inactivated hH1 Na+ channels exhibited a slightly higher intrinsic affinity than mu1 Na+ channels. Conclusions Differences in bupivacaine stereoselectivity and intrinsic affinity between hH1 and mu1 Na+ channels are small and most likely of minor clinical relevance. Amino acid residues in positions hH1-F1760, hH1-N1765, and hH1-N406 may contribute to binding of bupivacaine enantiomers in hH1 Na+ channels, whereas the role of hH1-Y1767 remains unclear.


1979 ◽  
Vol 73 (1) ◽  
pp. 1-21 ◽  
Author(s):  
J Z Yeh

The interactions of 9-aminoacridine with ionic channels were studied in internally perfused squid axons. The kinetics of block of Na channels with 9-aminoacridine varies depending on the voltage-clamp pulses and the state of gating machinery of Na channels. In an axon with intact h gate, the block exhibits frequency- and voltage-dependent characteristics. However, in the pronase-perfused axon, the frequency-dependent block disappears, whereas the voltage-dependent block remains unchanged. A time-dependent decrease in Na currents indicative of direct block of Na channel by drug molecule follows a single exponential function with a time constant of 2.0 +/- 0.18 and 1.0 +/- 0.19 ms (at 10 degrees C and 80 m V) for 30 and 100 microM 9-aminoacridine, respectively. A steady-state block can be achieved during a single 8-ms depolarizing pulse when the h gate has been removed. The block in the h-gate intact axon can be achieved only with multiple conditioning pulses. The voltage-dependent block suggests that 9-aminoacridine binds to a site located halfway across the membrane with a dissociation constant of 62 microM at 0 m V. 9-Aminoacridine also blocks K channels, and the block is time- and voltage-dependent.


2000 ◽  
Vol 91 (5) ◽  
pp. 1213-1220 ◽  
Author(s):  
Akiyoshi Oda ◽  
Hidenori Ohashi ◽  
Seiichi Komori ◽  
Hiroki Iida ◽  
Shuji Dohi

2002 ◽  
Vol 120 (4) ◽  
pp. 509-516 ◽  
Author(s):  
Arie F. Struyk ◽  
Stephen C. Cannon

Slow inactivation of voltage-gated Na channels is kinetically and structurally distinct from fast inactivation. Whereas structures that participate in fast inactivation are well described and include the cytoplasmic III-IV linker, the nature and location of the slow inactivation gating mechanism remains poorly understood. Several lines of evidence suggest that the pore regions (P-regions) are important contributors to slow inactivation gating. This has led to the proposal that a collapse of the pore impedes Na current during slow inactivation. We sought to determine whether such a slow inactivation-coupled conformational change could be detected in the outer pore. To accomplish this, we used a rapid perfusion technique to measure reaction rates between cysteine-substituted side chains lining the aqueous pore and the charged sulfhydryl-modifying reagent MTS-ET. A pattern of incrementally slower reaction rates was observed at substituted sites at increasing depth in the pore. We found no state-dependent change in modification rates of P-region residues located in all four domains, and thus no change in aqueous accessibility, between slow- and nonslow-inactivated states. In domains I and IV, it was possible to measure modification rates at residues adjacent to the narrow DEKA selectivity filter (Y401C and G1530C), and yet no change was observed in accessibility in either slow- or nonslow-inactivated states. We interpret these results as evidence that the outer mouth of the Na pore remains open while the channel is slow inactivated.


2006 ◽  
Vol 127 (3) ◽  
pp. 267-276 ◽  
Author(s):  
Xuanmao Chen ◽  
Hubert Kalbacher ◽  
Stefan Gründer

Acid-sensing ion channels (ASICs) are Na+ channels gated by extracellular H+. Six ASIC subunits that are expressed in neurons have been characterized. The tarantula toxin psalmotoxin 1 has been reported to potently and specifically inhibit homomeric ASIC1a and has been useful to characterize ASICs in neurons. Recently we have shown that psalmotoxin 1 inhibits ASIC1a by increasing its apparent affinity for H+. However, the mechanism by which PcTx1 increases the apparent H+ affinity remained unclear. Here we show that PcTx1 also interacts with ASIC1b, a splice variant of ASIC1a. However, PcTx1 does not inhibit ASIC1b but promotes its opening; under slightly acidic conditions, PcTx1 behaves like an agonist for ASIC1b. Our results are most easily explained by binding of PcTx1 with different affinities to different states (closed, open, and desensitized) of the channel. For ASIC1b, PcTx1 binds most tightly to the open state, promoting opening, whereas for ASIC1a, it binds most tightly to the open and the desensitized state, promoting desensitization.


1996 ◽  
Vol 107 (5) ◽  
pp. 643-658 ◽  
Author(s):  
J R Balser ◽  
H B Nuss ◽  
D N Romashko ◽  
E Marban ◽  
G F Tomaselli

Na channels open upon depolarization but then enter inactivated states from which they cannot readily reopen. After brief depolarizations, native channels enter a fast-inactivated state from which recovery at hyperpolarized potentials is rapid (< 20 ms). Prolonged depolarization induces a slow-inactivated state that requires much longer periods for recovery (> 1 s). The slow-inactivated state therefore assumes particular importance in pathological conditions, such as ischemia, in which tissues are depolarized for prolonged periods. While use-dependent block of Na channels by local anesthetics has been explained on the basis of delayed recovery of fast-inactivated Na channels, the potential contribution of slow-inactivated channels has been ignored. The principal (alpha) subunits from skeletal muscle or brain Na channels display anomalous gating behavior when expressed in Xenopus oocytes, with a high percentage entering slow-inactivated states after brief depolarizations. This enhanced slow inactivation is eliminated by coexpressing the alpha subunit with the subsidiary beta 1 subunit. We compared the lidocaine sensitivity of alpha subunits expressed in the presence and absence of the beta 1 subunit to determine the relative contributions of fast-inactivated and slow-inactivated channel block. Coexpression of beta 1 inhibited the use-dependent accumulation of lidocaine block during repetitive (1-Hz) depolarizations from -100 to -20 mV. Therefore, the time required for recovery from inactivated channel block was measured at -100 mV. Fast-inactivated (alpha + beta 1) channels were mostly unblocked within 1 s of repolarization; however, slow-inactivated (alpha alone) channels remained blocked for much longer repriming intervals (> 5 s). The affinity of the slow-inactivated state for lidocaine was estimated to be 15-25 microM, versus 24 microM for the fast-inactivated state. We conclude that slow-inactivated Na channels are blocked by lidocaine with an affinity comparable to that of fast-inactivated channels. A prominent functional consequence is potentiation of use-dependent block through a delay in repriming of lidocaine-bound slow-inactivated channels.


Sign in / Sign up

Export Citation Format

Share Document