scholarly journals Exploiting mammalian low-complexity domains for liquid-liquid phase separation–driven underwater adhesive coatings

2019 ◽  
Vol 5 (8) ◽  
pp. eaax3155 ◽  
Author(s):  
Mengkui Cui ◽  
Xinyu Wang ◽  
Bolin An ◽  
Chen Zhang ◽  
Xinrui Gui ◽  
...  

Many biological materials form via liquid-liquid phase separation (LLPS), followed by maturation into a solid-like state. Here, using a biologically inspired assembly mechanism designed to recapitulate these sequential assemblies, we develop ultrastrong underwater adhesives made from engineered proteins containing mammalian low-complexity (LC) domains. We show that LC domain–mediated LLPS and maturation substantially promotes the wetting, adsorption, priming, and formation of dense, uniform amyloid nanofiber coatings on diverse surfaces (e.g., Teflon), and even penetrating difficult-to-access locations such as the interiors of microfluidic devices. Notably, these coatings can be deposited on substrates over a broad range of pH values (3 to 11) and salt concentrations (up to 1 M NaCl) and exhibit strong underwater adhesion performance. Beyond demonstrating the utility of mammalian LC domains for driving LLPS in soft materials applications, our study illustrates a powerful example of how combining LLPS with subsequent maturation steps can be harnessed for engineering protein-based materials.

Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 548
Author(s):  
Donya Pakravan ◽  
Emiel Michiels ◽  
Anna Bratek-Skicki ◽  
Mathias De Decker ◽  
Joris Van Lindt ◽  
...  

Aggregates of TAR DNA-binding protein (TDP-43) are a hallmark of several neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). Although TDP-43 aggregates are an undisputed pathological species at the end stage of these diseases, the molecular changes underlying the initiation of aggregation are not fully understood. The aim of this study was to investigate how phase separation affects self-aggregation and aggregation seeded by pre-formed aggregates of either the low-complexity domain (LCD) or its short aggregation-promoting regions (APRs). By systematically varying the physicochemical conditions, we observed that liquid–liquid phase separation (LLPS) promotes spontaneous aggregation. However, we noticed less efficient seeded aggregation in phase separating conditions. By analyzing a broad range of conditions using the Hofmeister series of buffers, we confirmed that stabilizing hydrophobic interactions prevail over destabilizing electrostatic forces. RNA affected the cooperativity between LLPS and aggregation in a “reentrant” fashion, having the strongest positive effect at intermediate concentrations. Altogether, we conclude that conditions which favor LLPS enhance the subsequent aggregation of the TDP-43 LCD with complex dependence, but also negatively affect seeding kinetics.


2021 ◽  
Author(s):  
Josep Rizo ◽  
Carlos M. Roggero ◽  
Victoria Esser ◽  
Lingling Duan ◽  
Allyson M. Rice ◽  
...  

The androgen receptor (AR) plays a central role in prostate cancer. Development of castration resistant prostate cancer (CRPC) requires androgen-independent activation of AR, which involves its large N-terminal domain (NTD) and entails dramatic epigenetic changes depending in part on histone lysine demethylases (KDMs) that interact with AR. The AR-NTD is rich in low-complexity sequences, including a polyQ repeat. Longer polyQ sequences were reported to decrease transcriptional activity and to protect against prostate cancer. However, the molecular mechanisms underlying these observations are unclear. Using NMR spectroscopy, here we identify weak interactions between the AR-NTD and the KDM4A catalytic domain, and between the AR ligand-binding domain and a central KDM4A region that also contains low-complexity sequences. We also show that the AR-NTD can undergo liquid-liquid phase separation in vitro, with longer polyQ sequences phase separating more readily. Moreover, longer polyQ sequences hinder nuclear localization in the absence of hormone and increase the propensity for formation of AR-containing puncta in the nucleus of cells treated with dihydrotestosterone. These results lead us to hypothesize that polyQ-dependent liquid-liquid phase separation may provide a mechanism to decrease the transcriptional activity of AR, potentially opening new opportunities to design effective therapies against CRPC.


Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1248
Author(s):  
Juan Carlos Aledo

Membraneless organelles are non-stoichiometric supramolecular structures in the micron scale. These structures can be quickly assembled/disassembled in a regulated fashion in response to specific stimuli. Membraneless organelles contribute to the spatiotemporal compartmentalization of the cell, and they are involved in diverse cellular processes often, but not exclusively, related to RNA metabolism. Liquid-liquid phase separation, a reversible event involving demixing into two distinct liquid phases, provides a physical framework to gain insights concerning the molecular forces underlying the process and how they can be tuned according to the cellular needs. Proteins able to undergo phase separation usually present a modular architecture, which favors a multivalency-driven demixing. We discuss the role of low complexity regions in establishing networks of intra- and intermolecular interactions that collectively control the phase regime. Post-translational modifications of the residues present in these domains provide a convenient strategy to reshape the residue–residue interaction networks that determine the dynamics of phase separation. Focus will be placed on those proteins with low complexity domains exhibiting a biased composition towards the amino acid methionine and the prominent role that reversible methionine sulfoxidation plays in the assembly/disassembly of biomolecular condensates.


2019 ◽  
Vol 11 (9) ◽  
pp. 807-809
Author(s):  
Chenlu Wang ◽  
Erhao Zhang ◽  
Fan Wu ◽  
Yufeng Sun ◽  
Yingcheng Wu ◽  
...  

2021 ◽  
Author(s):  
Einav Tayeb-Fligelman ◽  
Xinyi Cheng ◽  
Christen Tai ◽  
Jeannette T. Bowler ◽  
Sarah Griner ◽  
...  

The SARS-CoV-2 Nucleoprotein (NCAP) functions in RNA packaging during viral replication and assembly. Computational analysis of its amino acid sequence reveals a central low-complexity domain (LCD) having sequence features akin to LCDs in other proteins known to function in liquid-liquid phase separation. Here we show that in the presence of viral RNA, NCAP, and also its LCD segment alone, form amyloid-like fibrils when undergoing liquid-liquid phase separation. Within the LCD we identified three 6-residue segments that drive amyloid fibril formation. We determined atomic structures for fibrils formed by each of the three identified segments. These structures informed our design of peptide inhibitors of NCAP fibril formation and liquid-liquid phase separation, suggesting a therapeutic route for Covid-19.


2019 ◽  
Vol 26 (7) ◽  
pp. 637-648 ◽  
Author(s):  
Anastasia C. Murthy ◽  
Gregory L. Dignon ◽  
Yelena Kan ◽  
Gül H. Zerze ◽  
Sapun H. Parekh ◽  
...  

2019 ◽  
Author(s):  
Alexander von Appen ◽  
Dollie LaJoie ◽  
Isabel E. Johnson ◽  
Mike Trnka ◽  
Sarah M. Pick ◽  
...  

At mitotic exit, microtubule arrays are dismantled in concert with the reformation of the nuclear envelope. We show how the inner nuclear membrane protein, LEM2, exploits liquid-liquid phase separation to direct microtubule remodeling and nuclear envelope sealing via the Endosomal Sorting Complexes Required for Transport (ESCRT) pathway. LEM2 tethers membrane to chromatin disks through direct binding between its LEM motif and the chromatin-associated barrier-to-autointegration factor (BAF). Concurrently, a low-complexity domain within LEM2 undergoes liquid-liquid phase separation to coat spindle microtubule bundles. Spatially restricted, LEM2’s winged helix (WH) domain activates the ESCRT-II/ESCRT-III hybrid protein, CHMP7. Together LEM2 and CHMP7 copolymerize around microtubule bundles to form a molecular “O-ring” that promotes nuclear compartmentalization and initiates downstream ESCRT factor recruitment. These results demonstrate how multivalent interactions of a transmembrane protein, including those that mediate phase separation, coordinate localized ESCRT polymerization, mitotic spindle disassembly, and membrane fusion. Defects in this pathway compromise spindle disassembly, nuclear integrity, and genome stability.


2019 ◽  
Author(s):  
Joris van Lindt ◽  
Anna Bratek-Skicki ◽  
Donya Pakravan ◽  
Ludo Van Den Bosch ◽  
Dominique Maes ◽  
...  

Understanding the kinetics and underlying physicochemical forces of liquid-liquid phase separation (LLPS) is of paramount importance in cell biology, requiring reproducible methods for the analysis of often severely aggregation-prone proteins. Frequently applied approaches, such as dilution of the protein from an urea-containing solution or cleavage of its fused solubility tag, however, often lead to very different kinetic behaviors. Here we suggest that at extreme pH values even proteins such as the low-complexity domain (LCD) of hnRNPA2, TDP-43, and NUP-98 can be kept in solution, and then their LLPS can be induced by a jump to native pH, resulting in a system that can be easily controlled. This approach represents a generic method for studying LLPS under near native conditions, providing a platform for studying the phase-separation behavior of diverse proteins.


2021 ◽  
Author(s):  
Phoebe S. Tsoi ◽  
My Diem Quan ◽  
Kyoung‐Jae Choi ◽  
Khoa M. Dao ◽  
Josephine C. Ferreon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document