scholarly journals A generic approach for studying the kinetics of liquid-liquid phase separation under near-native conditions

2019 ◽  
Author(s):  
Joris van Lindt ◽  
Anna Bratek-Skicki ◽  
Donya Pakravan ◽  
Ludo Van Den Bosch ◽  
Dominique Maes ◽  
...  

Understanding the kinetics and underlying physicochemical forces of liquid-liquid phase separation (LLPS) is of paramount importance in cell biology, requiring reproducible methods for the analysis of often severely aggregation-prone proteins. Frequently applied approaches, such as dilution of the protein from an urea-containing solution or cleavage of its fused solubility tag, however, often lead to very different kinetic behaviors. Here we suggest that at extreme pH values even proteins such as the low-complexity domain (LCD) of hnRNPA2, TDP-43, and NUP-98 can be kept in solution, and then their LLPS can be induced by a jump to native pH, resulting in a system that can be easily controlled. This approach represents a generic method for studying LLPS under near native conditions, providing a platform for studying the phase-separation behavior of diverse proteins.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Joris Van Lindt ◽  
Anna Bratek-Skicki ◽  
Phuong N. Nguyen ◽  
Donya Pakravan ◽  
Luis F. Durán-Armenta ◽  
...  

AbstractUnderstanding the kinetics, thermodynamics, and molecular mechanisms of liquid–liquid phase separation (LLPS) is of paramount importance in cell biology, requiring reproducible methods for studying often severely aggregation-prone proteins. Frequently applied approaches for inducing LLPS, such as dilution of the protein from an urea-containing solution or cleavage of its fused solubility tag, often lead to very different kinetic behaviors. Here we demonstrate that at carefully selected pH values proteins such as the low-complexity domain of hnRNPA2, TDP-43, and NUP98, or the stress protein ERD14, can be kept in solution and their LLPS can then be induced by a jump to native pH. This approach represents a generic method for studying the full kinetic trajectory of LLPS under near native conditions that can be easily controlled, providing a platform for the characterization of physiologically relevant phase-separation behavior of diverse proteins.


2019 ◽  
Author(s):  
Soumik Ray ◽  
Nitu Singh ◽  
Satyaprakash Pandey ◽  
Rakesh Kumar ◽  
Laxmikant Gadhe ◽  
...  

SUMMARYα-Synuclein (α-Syn) aggregation and amyloid formation is directly linked with Parkinson’s disease (PD) pathogenesis. However, the early events involved in this process remain unclear. Here, using in vitro reconstitution and cellular model, we show that liquid-liquid phase separation (LLPS) of α-Syn precedes its aggregation. In particular, in vitro generated α-Syn liquid-like droplets eventually undergo a liquid-to-solid transition and form amyloid-hydrogel containing oligomers and fibrillar species. Factors known to aggravate α-Syn aggregation such as low pH, phosphomimic substitution, and familial PD mutation also promote α-Syn LLPS and its subsequent maturation. We further demonstrate α-Syn liquid droplet formation in cells, under oxidative stress. These cellular α-Syn droplets eventually transform into perinuclear aggresomes, the process regulated by microtubules. The present work provides detailed insights into the phase separation behavior of natively unstructured α-Syn and its conversion to a disease-associated aggregated state, which is highly relevant in PD pathogenesis.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 548
Author(s):  
Donya Pakravan ◽  
Emiel Michiels ◽  
Anna Bratek-Skicki ◽  
Mathias De Decker ◽  
Joris Van Lindt ◽  
...  

Aggregates of TAR DNA-binding protein (TDP-43) are a hallmark of several neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). Although TDP-43 aggregates are an undisputed pathological species at the end stage of these diseases, the molecular changes underlying the initiation of aggregation are not fully understood. The aim of this study was to investigate how phase separation affects self-aggregation and aggregation seeded by pre-formed aggregates of either the low-complexity domain (LCD) or its short aggregation-promoting regions (APRs). By systematically varying the physicochemical conditions, we observed that liquid–liquid phase separation (LLPS) promotes spontaneous aggregation. However, we noticed less efficient seeded aggregation in phase separating conditions. By analyzing a broad range of conditions using the Hofmeister series of buffers, we confirmed that stabilizing hydrophobic interactions prevail over destabilizing electrostatic forces. RNA affected the cooperativity between LLPS and aggregation in a “reentrant” fashion, having the strongest positive effect at intermediate concentrations. Altogether, we conclude that conditions which favor LLPS enhance the subsequent aggregation of the TDP-43 LCD with complex dependence, but also negatively affect seeding kinetics.


2019 ◽  
Vol 5 (8) ◽  
pp. eaax3155 ◽  
Author(s):  
Mengkui Cui ◽  
Xinyu Wang ◽  
Bolin An ◽  
Chen Zhang ◽  
Xinrui Gui ◽  
...  

Many biological materials form via liquid-liquid phase separation (LLPS), followed by maturation into a solid-like state. Here, using a biologically inspired assembly mechanism designed to recapitulate these sequential assemblies, we develop ultrastrong underwater adhesives made from engineered proteins containing mammalian low-complexity (LC) domains. We show that LC domain–mediated LLPS and maturation substantially promotes the wetting, adsorption, priming, and formation of dense, uniform amyloid nanofiber coatings on diverse surfaces (e.g., Teflon), and even penetrating difficult-to-access locations such as the interiors of microfluidic devices. Notably, these coatings can be deposited on substrates over a broad range of pH values (3 to 11) and salt concentrations (up to 1 M NaCl) and exhibit strong underwater adhesion performance. Beyond demonstrating the utility of mammalian LC domains for driving LLPS in soft materials applications, our study illustrates a powerful example of how combining LLPS with subsequent maturation steps can be harnessed for engineering protein-based materials.


Sign in / Sign up

Export Citation Format

Share Document