scholarly journals Natural van der Waals heterostructural single crystals with both magnetic and topological properties

2019 ◽  
Vol 5 (11) ◽  
pp. eaax9989 ◽  
Author(s):  
Jiazhen Wu ◽  
Fucai Liu ◽  
Masato Sasase ◽  
Koichiro Ienaga ◽  
Yukiko Obata ◽  
...  

Heterostructures having both magnetism and topology are promising materials for the realization of exotic topological quantum states while challenging in synthesis and engineering. Here, we report natural magnetic van der Waals heterostructures of (MnBi2Te4)m(Bi2Te3)n that exhibit controllable magnetic properties while maintaining their topological surface states. The interlayer antiferromagnetic exchange coupling is gradually weakened as the separation of magnetic layers increases, and an anomalous Hall effect that is well coupled with magnetization and shows ferromagnetic hysteresis was observed below 5 K. The obtained homogeneous heterostructure with atomically sharp interface and intrinsic magnetic properties will be an ideal platform for studying the quantum anomalous Hall effect, axion insulator states, and the topological magnetoelectric effect.

2020 ◽  
Vol 116 (14) ◽  
pp. 141603
Author(s):  
Jinling Yu ◽  
Wenyi Wu ◽  
Yumeng Wang ◽  
Kejing Zhu ◽  
Xiaolin Zeng ◽  
...  

Nanoscale ◽  
2020 ◽  
Vol 12 (45) ◽  
pp. 23266-23273
Author(s):  
Ying Zhang ◽  
Wenhui Wang ◽  
Meng Huang ◽  
Ping Liu ◽  
Guojing Hu ◽  
...  

Detection of the antiferromagnetic (AFM) state is an important issue for the application of two-dimensional (2D) antiferromagnets in spintronics, and interfacial exchange coupling is a highly efficient means to detect AFM order.


2018 ◽  
Vol 115 (37) ◽  
pp. 9140-9144 ◽  
Author(s):  
Chandra Shekhar ◽  
Nitesh Kumar ◽  
V. Grinenko ◽  
Sanjay Singh ◽  
R. Sarkar ◽  
...  

Topological materials ranging from topological insulators to Weyl and Dirac semimetals form one of the most exciting current fields in condensed-matter research. Many half-Heusler compounds, RPtBi (R = rare earth), have been theoretically predicted to be topological semimetals. Among various topological attributes envisaged in RPtBi, topological surface states, chiral anomaly, and planar Hall effect have been observed experimentally. Here, we report an unusual intrinsic anomalous Hall effect (AHE) in the antiferromagnetic Heusler Weyl semimetal compounds GdPtBi and NdPtBi that is observed over a wide temperature range. In particular, GdPtBi exhibits an anomalous Hall conductivity of up to 60 Ω−1⋅cm−1 and an anomalous Hall angle as large as 23%. Muon spin-resonance (μSR) studies of GdPtBi indicate a sharp antiferromagnetic transition (TN) at 9 K without any noticeable magnetic correlations above TN. Our studies indicate that Weyl points in these half-Heuslers are induced by a magnetic field via exchange splitting of the electronic bands at or near the Fermi energy, which is the source of the chiral anomaly and the AHE.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mingqiang Gu ◽  
Jiayu Li ◽  
Hongyi Sun ◽  
Yufei Zhao ◽  
Chang Liu ◽  
...  

AbstractThe topological surface states of magnetic topological systems, such as Weyl semimetals and axion insulators, are associated with unconventional transport properties such as nonzero or half-quantized surface anomalous Hall effect. Here we study the surface anomalous Hall effect and its spectral signatures in different magnetic topological phases using both model Hamiltonian and first-principles calculations. We demonstrate that by tailoring the magnetization and interlayer electron hopping, a rich three-dimensional topological phase diagram can be established, including three types of topologically distinct insulating phases bridged by Weyl semimetals, and can be directly mapped to realistic materials such as MnBi2Te4/(Bi2Te3)n systems. Among them, we find that the surface anomalous Hall conductivity in the axion-insulator phase is a well-localized quantity either saturated at or oscillating around e2/2h, depending on the magnetic homogeneity. We also discuss the resultant chiral hinge modes embedded inside the side surface bands as the potential experimental signatures for transport measurements. Our study is a significant step forward towards the direct realization of the long-sought axion insulators in realistic material systems.


ACS Nano ◽  
2021 ◽  
Author(s):  
Meng Huang ◽  
Shanshan Wang ◽  
Zhaohao Wang ◽  
Ping Liu ◽  
Junxiang Xiang ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Chaowei Hu ◽  
Kyle N. Gordon ◽  
Pengfei Liu ◽  
Jinyu Liu ◽  
Xiaoqing Zhou ◽  
...  

AbstractMagnetic topological insulators (TI) provide an important material platform to explore quantum phenomena such as quantized anomalous Hall effect and Majorana modes, etc. Their successful material realization is thus essential for our fundamental understanding and potential technical revolutions. By realizing a bulk van der Waals material MnBi4Te7 with alternating septuple [MnBi2Te4] and quintuple [Bi2Te3] layers, we show that it is ferromagnetic in plane but antiferromagnetic along the c axis with an out-of-plane saturation field of ~0.22 T at 2 K. Our angle-resolved photoemission spectroscopy measurements and first-principles calculations further demonstrate that MnBi4Te7 is a Z2 antiferromagnetic TI with two types of surface states associated with the [MnBi2Te4] or [Bi2Te3] termination, respectively. Additionally, its superlattice nature may make various heterostructures of [MnBi2Te4] and [Bi2Te3] layers possible by exfoliation. Therefore, the low saturation field and the superlattice nature of MnBi4Te7 make it an ideal system to investigate rich emergent phenomena.


2008 ◽  
Vol 10 (11) ◽  
pp. 115002 ◽  
Author(s):  
Yoon Shon ◽  
Sejoon Lee ◽  
D Y Kim ◽  
T W Kang ◽  
Chong S Yoon ◽  
...  

2017 ◽  
Vol 254 ◽  
pp. 48-51 ◽  
Author(s):  
K.K. Meng ◽  
J. Miao ◽  
X.G. Xu ◽  
Y. Wu ◽  
J.H. Zhao ◽  
...  

2020 ◽  
Vol 213 ◽  
pp. 02016
Author(s):  
Zhi Lin

Starting from crystal, electronic and magnetic structures of Heusler compounds, this paper studies the new topological materials related to Heusler compounds and their topological properties, such as anomalous Hall effect, skyrmions, chiral anomaly, Dirac fermion, Weyl fermion, transverse Nernst thermoelectric effect, thermal spintronics and topological surface states. It can be discovered that the topological state of Heusler compound can be well protected due to its high symmetry, thus producing rich topological properties. Heusler materials belonged to Weyl semimetals usually have strong anomalous Hall effect, and the Heusler materials with doping or Anomalous Nernst Effect (ANE) usually have higher thermoelectric figure of merit. These anomalous effects are closely related to the strong spin–orbit interaction. In application, people can use the non-dissipative edge state of quantum anomalous Hall effect to develop a new generation of low-energy transistors and electronic devices. The conversion efficiency of thermoelectric materials can be improved by ANE, and topological superconductivity can be used to promote the progress of quantum computation.


2020 ◽  
pp. 412692
Author(s):  
Zhongping Zhao ◽  
Qi Guo ◽  
Fenghua Chen ◽  
Kewei Zhang ◽  
Yong Jiang

Sign in / Sign up

Export Citation Format

Share Document