scholarly journals The motor cortex uses active suppression to sculpt movement

2020 ◽  
Vol 6 (34) ◽  
pp. eabb8395 ◽  
Author(s):  
Darcy M. Griffin ◽  
Peter L. Strick

Even the simplest movements are generated by a remarkably complex pattern of muscle activity. Fast, accurate movements at a single joint are produced by a stereotyped pattern that includes a decrease in any preexisting activity in antagonist muscles. This premovement suppression is necessary to prevent the antagonist muscle from opposing movement generated by the agonist muscle. Here, we provide evidence that the primary motor cortex (M1) sends a command signal that generates this premovement suppression. Thus, output neurons in M1 sculpt complex spatiotemporal patterns of motor output not only by actively turning on muscles but also by actively turning them off.

1995 ◽  
Vol 73 (2) ◽  
pp. 891-895 ◽  
Author(s):  
D. S. Hoffman ◽  
P. L. Strick

1. We lesioned the contralateral arm area of the primary motor cortex (M1) in a monkey that had been trained to make rapid step-tracking movements of the wrist in different directions. We examined movement kinematics and electromyographic (EMG) activity of forearm muscles both before and 3.5-5 mo after the lesion. 2. The lesion caused marked changes in movement kinematics and the patterns of activity in agonist, synergist, and antagonist muscles. 3. After the lesion, movements to all targets were performed more slowly. In addition, some movements were misdirected. For example, most movements to the target that required wrist flexion and radial deviation were made in two steps, instead of in a single smooth trajectory. 4. After the lesion, distinct bursts of muscle activity were no longer observed during step-tracking movements. In addition, suppression of antagonist activity at movement onset was abolished or reduced. The relative timing of agonist and synergist muscle activity was markedly altered. 5. We conclude that M1 contributes to the precise spatiotemporal patterning of muscle activity during step-tracking movements.


2011 ◽  
Vol 105 (6) ◽  
pp. 2937-2942 ◽  
Author(s):  
Alana B. McCambridge ◽  
Lynley V. Bradnam ◽  
Cathy M. Stinear ◽  
Winston D. Byblow

Proximal upper limb muscles are represented bilaterally in primary motor cortex. Goal-directed upper limb movement requires precise control of proximal and distal agonist and antagonist muscles. Failure to suppress antagonist muscles can lead to abnormal movement patterns, such as those commonly experienced in the proximal upper limb after stroke. We examined whether noninvasive brain stimulation of primary motor cortex could be used to improve selective control of the ipsilateral proximal upper limb. Thirteen healthy participants performed isometric left elbow flexion by contracting biceps brachii (BB; agonist) and left forearm pronation (BB antagonist) before and after 20 min of cathodal transcranial direct current stimulation (c-tDCS) or sham tDCS of left M1. During the tasks, motor evoked potentials (MEPs) in left BB were acquired using single-pulse transcranial magnetic stimulation of right M1 150–270 ms before muscle contraction. As expected, left BB MEPs were facilitated before flexion and suppressed before pronation. After c-tDCS, left BB MEP amplitudes were reduced compared with sham stimulation, before pronation but not flexion, indicating that c-tDCS enhanced selective muscle activation of the ipsilateral BB in a task-specific manner. The potential for c-tDCS to improve BB antagonist control correlated with BB MEP amplitude for pronation relative to flexion, expressed as a selectivity ratio. This is the first demonstration that selective muscle activation in the proximal upper limb can be improved after c-tDCS of ipsilateral M1 and that the benefits of c-tDCS for selective muscle activation may be most effective in cases where activation strategies are already suboptimal. These findings may have relevance for the use of tDCS in rehabilitation after stroke.


2016 ◽  
Vol 115 (4) ◽  
pp. 2021-2032 ◽  
Author(s):  
Ethan A. Heming ◽  
Timothy P. Lillicrap ◽  
Mohsen Omrani ◽  
Troy M. Herter ◽  
J. Andrew Pruszynski ◽  
...  

Primary motor cortex (M1) activity correlates with many motor variables, making it difficult to demonstrate how it participates in motor control. We developed a two-stage process to separate the process of classifying the motor field of M1 neurons from the process of predicting the spatiotemporal patterns of its motor field during reaching. We tested our approach with a neural network model that controlled a two-joint arm to show the statistical relationship between network connectivity and neural activity across different motor tasks. In rhesus monkeys, M1 neurons classified by this method showed preferred reaching directions similar to their associated muscle groups. Importantly, the neural population signals predicted the spatiotemporal dynamics of their associated muscle groups, although a subgroup of atypical neurons reversed their directional preference, suggesting a selective role in antagonist control. These results highlight that M1 provides important details on the spatiotemporal patterns of muscle activity during motor skills such as reaching.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Nordeyn Oulad Ben Taib ◽  
Mario Manto

We assessed the effects of anodal/cathodal direct current stimulation (DCS) applied epidurally over the cerebellum. We studied the excitability of both the motor cortex and the anterior horn of the spinal cord in adult rats under continuous anesthesia. We also investigated the effects on the spatial representation of a couple of agonist/antagonist muscles on primary motor cortex. Moreover, we evaluated the effects on the afferent inhibition in a paradigm of conditioned corticomotor responses. Anodal DCS of the cerebellum (1) decreased the excitability of the motor cortex, (2) reduced the excitability ofFwaves, as shown by the decrease of both meanF/meanMratios and persistence ofFwaves, (3) exerted a “smoothing effect” on corticomotor maps, reshaping the representation of muscles on the motor cortex, and (4) enhanced the afferent inhibition of conditioned motor evoked responses. Cathodal DCS of the cerebellum exerted partially reverse effects. DCS of the cerebellum modulates the excitability of both motor cortex and spinal cord at the level of the anterior horn. This is the first demonstration that cerebellar DCS tunes the shape of corticomotor maps. Our findings provide a novel mechanism by which DCS of the cerebellum exerts a remote neuromodulatory effect upon motor cortex.


1997 ◽  
Vol 77 (5) ◽  
pp. 2446-2465 ◽  
Author(s):  
Gail L. Widener ◽  
Paul D. Cheney

Widener, Gail L. and Paul D. Cheney. Effects on muscle activity from microstimuli applied to somatosensory and motor cortex during voluntary movement in the monkey. J. Neurophysiol. 77: 2446–2465, 1997. It is well known that electrical stimulation of primary somatosensory cortex (SI) evokes movements that resemble those evoked from primary motor cortex. These findings have led to the concept that SI may possess motor capabilities paralleling those of motor cortex and speculation that SI could function as a robust relay mediating motor responses from central and peripheral inputs. The purpose of this study was to rigorously examine the motor output capabilities of SI areas with the use of the techniques of spike- and stimulus-triggered averaging of electromyographic (EMG) activity in awake monkeys. Unit recordings were obtained from primary motor cortex and SI areas 3a, 3b, 1, and 2 in three rhesus monkeys. Spike-triggered averaging was used to assess the output linkage between individual cells and motoneurons of the recorded muscles. Cells in motor cortex producing postspike facilitation (PSpF) in spike-triggered averages of rectified EMG activity were designated corticomotoneuronal (CM) cells. Motor output efficacy was also assessed by applying stimuli through the microelectrode and computing stimulus-triggered averages of rectified EMG activity. One hundred seventy-one sites in motor cortex and 68 sites in SI were characterized functionally and tested for motor output effects on muscle activity. The incidence, character, and magnitude of motor output effects from SI areas were in sharp contrast to effects from CM cell sites in primary motor cortex. Of 68 SI cells tested with spike-triggered averaging, only one area 3a cell produced significant PSpF in spike-triggered averages of EMG activity. In comparison, 20 of 171 (12%) motor cortex cells tested produced significant postspike effects. Single-pulse intracortical microstimulation produced effects at all CM cell sites in motor cortex but at only 14% of SI sites. The large fraction of SI effects that was inhibitory represented yet another marked difference between CM cell sites in motor cortex and SI sites (25% vs 93%). The fact that motor output effects from SI were frequently absent or very weak and predominantly inhibitory emphasizes the differing motor capabilities of SI compared with primary motor cortex.


2019 ◽  
Author(s):  
K. Cora Ames ◽  
Mark M. Churchland

AbstractPrimary motor cortex (M1) has lateralized outputs, yet M1 neurons can be active during movements of either arm. What is the nature and role of activity in the two hemispheres? When one arm moves, are the contralateral and ipsilateral cortices performing similar or different computations? When both hemispheres are active, how does the brain avoid moving the “wrong” arm? We recorded muscle and neural activity bilaterally while two male monkeys (Macaca mulatta) performed a cycling task with one or the other arm. Neurons in both hemispheres were active during movements of either arm. Yet response patterns were arm-dependent, raising two possibilities. First, the nature of neural signals may differ (e.g., be high versus low-level) depending on whether the ipsilateral or contralateral arm is used. Second, the same population-level signals may be present regardless of the arm being used, but be reflected differently at the individual-neuron level. The data supported this second hypothesis. Muscle activity could be predicted by neural activity in either hemisphere. More broadly, we failed to find signals unique to the hemisphere contralateral to the moving arm. Yet if the same signals are shared across hemispheres, how do they avoid impacting the wrong arm? We found that activity related to the two arms occupied distinct, orthogonal subspaces of population activity. As a consequence, a linear decode of contralateral muscle activity naturally ignored signals related to the ipsilateral arm. Thus, information regarding the two arms is shared across hemispheres and neurons, but partitioned at the population level.


2020 ◽  
Author(s):  
Tatsuya Umeda ◽  
Tadashi Isa ◽  
Yukio Nishimura

AbstractThe spinal reflex transforms sensory signals to generate muscle activity. However, it is unknown how the motor cortex (MCx) takes the spinal reflex into account when performing voluntary limb movements. We simultaneously recorded the activity of the MCx, afferent neurons, and forelimb muscles in behaving monkeys. We decomposed muscle activity into subcomponents explained by the MCx or afferent activity using linear models. Long preceding activity in the MCx, which is responsible for subsequent afferent activity, had the same spatiotemporal contribution to muscle activity as afferent activity, indicating that the MCx drives muscle activity not only by direct descending activation but also by trans-afferent descending activation. Therefore, the MCx implements internal models that prospectively estimate muscle activation via the spinal reflex for precise movement control.


Sign in / Sign up

Export Citation Format

Share Document