scholarly journals Accelerated forest fragmentation leads to critical increase in tropical forest edge area

2021 ◽  
Vol 7 (37) ◽  
Author(s):  
Rico Fischer ◽  
Franziska Taubert ◽  
Michael S. Müller ◽  
Jürgen Groeneveld ◽  
Sebastian Lehmann ◽  
...  
1998 ◽  
Vol 353 (1367) ◽  
pp. 437-451 ◽  
Author(s):  
R. K. Didham ◽  
J. H. Lawton ◽  
P. M. Hammond ◽  
P. Eggleton

A first analysis of the stability of trophic structure following tropical forest fragmentation was performed in an experimentally fragmented tropical forest landscape in Central Amazonia. A taxonomically and trophically diverse assemblage of 993 species of beetles was sampled from 920 m 2 of leaf litter at 46 sites varying in distance from forest edge and fragment area. Beetle density increased significantly towards the forest edge and showed non-linear changes with fragment area, due to the influx of numerous disturbed-area species into 10 ha and 1 ha fragments. There was a marked change in species composition with both decreasing distance from forest edge and decreasing fragment area, but surprisingly this change in composition was not accompanied by a change in species richness. Rarefied species richness did not vary significantly across any of the sites, indicating that local extinctions of deep forest species were balanced by equivalent colonization rates of disturbed-area species. The change in species composition with fragmentation was non-random across trophic groups. Proportions of predator species and xylophage species changed significantly with distance from forest edge, but no area-dependent changes in proportions of species in trophic groups were observed. Trophic structure was also analysed with respect to proportions of abundance in six trophic groups. Proportions of abundance of all trophic groups except xylomycetophages changed markedly with respect to both distance from forest edge and fragment area. Local extinction probabilities calculated for individual beetle species supported theoretical predictions of the differential susceptibility of higher trophic levels to extinction, and of changes in trophic structure following forest fragmentation. To reduce random effects due to sampling error, only abundant species ( n ≥ 46) were analysed for extinction probabilities, as defined by absence from samples. Of these common species, 27% had significantly higher probabilities of local extinction following fragmentation. The majority of these species were predators; 42% of all abundant predator species were significantly more likely to be absent from samples in forest fragments than in undisturbed forest. These figures are regarded as minimum estimates for the entire beetle assemblage because rarer species will inevitably have higher extinction probabilities. Absolute loss of biodiversity will affect ecosystem process rates, but the differential loss of species from trophic groups will have an even greater destabilizing effect on food web structure and ecosystem function.


PLoS ONE ◽  
2010 ◽  
Vol 5 (3) ◽  
pp. e9534 ◽  
Author(s):  
Allison K. Leidner ◽  
Nick M. Haddad ◽  
Thomas E. Lovejoy

PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2039 ◽  
Author(s):  
Marcela Suarez-Rubio ◽  
Todd R. Lookingbill

Housing development beyond the urban fringe (i.e., exurban development) is one of the fastest growing forms of land-use change in the United States. Exurban development’s attraction to natural and recreational amenities has raised concerns for conservation and represents a potential threat to wildlife. Although forest-dependent species have been found particularly sensitive to low housing densities, it is unclear how the spatial distribution of houses affects forest birds. The aim of this study was to assess forest bird responses to changes in the spatial pattern of exurban development and also to examine species responses when forest loss and forest fragmentation were considered. We evaluated landscape composition around North American Breeding Bird Survey stops between 1986 and 2009 by developing a compactness index to assess changes in the spatial pattern of exurban development over time. Compactness was defined as a measure of how clustered exurban development was in the area surrounding each survey stop at each time period considered. We used Threshold Indicator Taxa Analysis to detect the response of forest and forest-edge species in terms of occurrence and relative abundance along the compactness gradient at two spatial scales (400-m and 1-km radius buffer). Our results showed that most forest birds and some forest-edge species were positively associated with high levels of compactness at the larger spatial scale; the proportion of forest in the surrounding landscape also had a significant effect when forest loss and forest fragmentation were accounted for. In contrast, the spatial configuration of exurban development was an important predictor of occurrence and abundance for only a few species at the smaller spatial scale. The positive response of forest birds to compactness at the larger scale could represent a systematic trajectory of decline and could be highly detrimental to bird diversity if exurban growth continues and creates more compacted development.


Diversity ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 66 ◽  
Author(s):  
Diego Balbuena ◽  
Alfonso Alonso ◽  
Margot Panta ◽  
Alan Garcia ◽  
Tremaine Gregory

Fragmentation caused by linear infrastructures is a threat to forest-dwelling wildlife globally. Loss of canopy connectivity is particularly problematic for highly arboreal species such as those of the Neotropics. We explored the use of both natural canopy bridges (NCBs) and a semi-artificial one over a natural gas pipeline right-of-way (RoW) in the Peruvian Amazon to provide more information on both a proven and a novel solution to the problem of fragmentation. We monitored seven NCBs over 14 months and found crossing rates higher than previously recorded (57.70 crossings/100 trap nights by 16 species). We also constructed a semi-artificial canopy bridge (SACB) out of a liana and found it to be used quickly (seven days after installation) and frequently (90.23 crossings/100 trap nights—nearly nightly) by five species (two procyonids, one didelphid, one primate, and one rodent). This information contributes to our knowledge of mitigation solutions for fragmentation. As linear infrastructure grows globally, more solutions must be developed and tested.


Ibis ◽  
2008 ◽  
Vol 106 (2) ◽  
pp. 221-248 ◽  
Author(s):  
J. H. Elgood ◽  
F. C. Sibley

2014 ◽  
Vol 28 (6) ◽  
pp. 1522-1531 ◽  
Author(s):  
JUSTUS P. DEIKUMAH ◽  
CLIVE A. MCALPINE ◽  
MARTINE MARON

Biotropica ◽  
2010 ◽  
Vol 42 (5) ◽  
pp. 521-525 ◽  
Author(s):  
Daniel J. Tregidgo ◽  
Lan Qie ◽  
Jos Barlow ◽  
Navjot S. Sodhi ◽  
Susan Lee-Hong Lim

Sign in / Sign up

Export Citation Format

Share Document