Terrestrial Magnetosphere

Science ◽  
1963 ◽  
Vol 140 (3574) ◽  
pp. 1362-1362
Author(s):  
Grote Reber
1995 ◽  
Vol 10 ◽  
pp. 291-293
Author(s):  
Martin C.E. Huber ◽  
Arne Pedersen ◽  
Claus Fröhlich

There is one astrophysical system, where the sites of a star’s mass loss can be localised and observed in detail, and where the behaviour of the resulting stellar wind in the star’s environment and around orbiting obstacles can be investigated in situ: it is the Sun, the heliosphere and the surroundings of planets — among the latter most prominently the terrestrial magnetosphere. Indeed, within a year or so a fleet of satellites equipped with sophisticated remote-sensing and in-situ instruments will make this astronomical paradigm, or more precisely, the solar-terrestrial system accessible to intensive, multi-disciplinary study.Four identical CLUSTER spacecraft, orbiting the Earth within the magnetosphere, the surrounding space and the particularly interesting plasma boundary layers will perform a three-dimensional in-situ study of plasma-heating, particle-acceleration and other small-scale plasma processes (Schmidt and Goldstein,1988). A number of other missions — some of them already in orbit, like GEOTAIL and WIND, some to be launched within one or two years, like INTERBALL and POLAR — will provide information about the Earth’s magnetosphere and the solar wind on larger spatial scales. These missions are described in a Brochure issued jointly by the European Space Agency, NASA, the Japanese Institute of Space and Astronomical Science and the Rssian Space Agency, which can be obtained from A. Pedersen at the above address.


2013 ◽  
Vol 8 (S300) ◽  
pp. 493-494 ◽  
Author(s):  
Rahul Sharma ◽  
Nandita Srivastava ◽  
D. Chakrabarty

AbstractWe studied three interplanetary coronal mass ejections associated with solar eruptive filaments. Filament plasma remnants embedded in these structures were identified using plasma, magnetic and compositional signatures. These features when impacted the Earth's terrestrial magnetosphere - ionosphere system, resulted in geomagnetic storms. During the main phase of associated storms, along with high density plasma structures, polarity reversals in the Y-component (dawn-to-dusk) of the interplanetary electric field seem to trigger major auroral substorms with concomitant changes in the polar ionospheric electric field. Here, we examine the cases where plasma dynamics and magnetic structuring in the presence of the prompt penetration of the electric field into the equatorial ionosphere affected the space weather while highlighting the complex geomagnetic storm-substorm relationship.


2000 ◽  
Vol 7 (3/4) ◽  
pp. 201-210 ◽  
Author(s):  
H. K. Biernat ◽  
N. V. Erkaev ◽  
C. J. Farrugia ◽  
D. F. Vogl ◽  
W. Schaffenberger

Abstract. The study of the interaction of the solar wind with magnetized and unmagnetized planets forms a central topic of space research. Focussing on planetary magnetosheaths, we review some major developments in this field. Magnetosheath structures depend crucially on the orientation of the interplanetary magnetic field, the solar wind Alfvén Mach number, the shape of the obstacle (axisymmetric/non-axisymmetric, etc.), the boundary conditions at the magnetopause (low/high magnetic shear), and the degree of thermal anisotropy of the plasma. We illustrate the cases of Earth, Jupiter and Venus. The terrestrial magnetosphere is axisymmetric and has been probed in-situ by many spacecraft. Jupiter's magnetosphere is highly non-axisymmetric. Furthermore, we study magnetohydrodynamic effects in the Venus magnetosheath.


Significant observations have been made with the Active Magnetospheric Particle Tracer Explorers data-set on the signatures of reconnection, thought to be the major process responsible for the coupling of the solar wind to the terrestrial magnetosphere. We review results reached by some of these studies. Recent theoretical ideas on reconnection at the terrestrial magnetopause, both time-independent and timedependent, are also briefly discussed. Two data examples from the International Sun-Earth Explorer mission are revisited and interpreted in the light of these newer developments.


Sign in / Sign up

Export Citation Format

Share Document