scholarly journals MHD effects of the solar wind flow around planets

2000 ◽  
Vol 7 (3/4) ◽  
pp. 201-210 ◽  
Author(s):  
H. K. Biernat ◽  
N. V. Erkaev ◽  
C. J. Farrugia ◽  
D. F. Vogl ◽  
W. Schaffenberger

Abstract. The study of the interaction of the solar wind with magnetized and unmagnetized planets forms a central topic of space research. Focussing on planetary magnetosheaths, we review some major developments in this field. Magnetosheath structures depend crucially on the orientation of the interplanetary magnetic field, the solar wind Alfvén Mach number, the shape of the obstacle (axisymmetric/non-axisymmetric, etc.), the boundary conditions at the magnetopause (low/high magnetic shear), and the degree of thermal anisotropy of the plasma. We illustrate the cases of Earth, Jupiter and Venus. The terrestrial magnetosphere is axisymmetric and has been probed in-situ by many spacecraft. Jupiter's magnetosphere is highly non-axisymmetric. Furthermore, we study magnetohydrodynamic effects in the Venus magnetosheath.

1981 ◽  
Vol 1 (1) ◽  
pp. 101-104
Author(s):  
V.B. Boranov ◽  
E.G. Eroshenko ◽  
M.D. Kartalev ◽  
I.P. Mastikov

2006 ◽  
Vol 122 (1-4) ◽  
pp. 209-219 ◽  
Author(s):  
Nikolai Erkaev ◽  
Alexander Mezentsev ◽  
Helfried Biernat

2020 ◽  
Author(s):  
Thomas Wiegelmann ◽  
Thomas Neukirch ◽  
Dieter Nickeler ◽  
Iulia Chifu

<p>Knowledge about the magnetic field and plasma environment is important<br>for almost all physical processes in the solar atmosphere. Precise<br>measurements of the magnetic field vector are done routinely only in<br>the photosphere, e.g. by SDO/HMI. These measurements are used as<br>boundary condition for modelling the solar chromosphere and corona,<br>whereas some model assumptions have to be made. In the low-plasma-beta<br>corona the Lorentz-force vanishes and the magnetic field<br>is reconstructed with a nonlinear force-free model. In the mixed-beta<br>chromosphere plasma forces have to be taken into account with the<br>help of a magnetostatic model. And finally for modelling the global<br>corona far beyond the source surface the solar wind flow has to<br>be incorporated within a stationary MHD model.<br>To do so, we generalize a nonlinear force-free and magneto-static optimization<br>code by the inclusion of a field aligned compressible plasma flow.<br>Applications are the implementation of the solar wind on<br>global scale. This allows to reconstruct the coronal magnetic field further<br>outwards than with potential field, nonlinear force-free and magneto-static models.<br>This way the model might help in future to provide the magnetic connectivity<br>for joint observations of remote sensing and in-situ instruments on Solar<br>Orbiter and Parker Solar Probe.</p>


1988 ◽  
pp. 47-54 ◽  
Author(s):  
A. Johnstone ◽  
K. Glassmeier ◽  
M. Acuna ◽  
H. Borg ◽  
D. Bryant ◽  
...  

2020 ◽  
Author(s):  
Erika Palmerio ◽  
Christina Lee ◽  
Leila Mays ◽  
Dusan Odstrcil

<p>The evolution of coronal mass ejections (CMEs) as they travel away from the Sun is one of the major issues in heliophysics and space weather. After erupting, CMEs propagate outwards through the background solar wind flow, which in turn may significantly affect CME evolution by means of e.g. acceleration, deflection, and/or rotation. In order to determine to which extent the ambient wind can alter the speed, trajectory, and orientation of a CME, we run a series of 3D magnetohydrodynamics simulations (using the coupled solar–heliospheric WSA–Enlil model) to conduct a multi-vantage point study of the radial and longitudinal evolution of CME structures as they propagate up to Earth’s (1 AU) and Mars’ (1.5 AU) orbits. We explore a broad range of input CME parameters (initial radial speed, angular width) and ambient solar wind conditions (slow versus fast wind) to investigate the different evolutionary behaviours of CMEs and their driven shocks and sheath regions. To study the radial and longitudinal evolution for the modelled CME ejecta and shock events, we examine the resulting magnetic field and plasma time series at different heliocentric distances (0.5 AU, 1 AU, and 1.5 AU) and heliolongitudes (in 30° increments). This work will help establish a set of expected CME behaviours at Earth’s and Mars’ radial distances, which can be used for analysing real CME events.</p>


Author(s):  
Allan R Macneil ◽  
Mathew J Owens ◽  
Robert T Wicks ◽  
Mike Lockwood

Abstract In its first encounter at solar distances as close as r = 0.16AU, Parker Solar Probe (PSP) observed numerous local reversals, or inversions, in the heliospheric magnetic field (HMF), which were accompanied by large spikes in solar wind speed. Both solar and in situ mechanisms have been suggested to explain the existence of HMF inversions in general. Previous work using Helios 1, covering 0.3–1AU, observed inverted HMF to become more common with increasing r, suggesting that some heliospheric driving process creates or amplifies inversions. This study expands upon these findings, by analysing inversion-associated changes in plasma properties for the same large data set, facilitated by observations of ‘strahl’ electrons to identify the unperturbed magnetic polarity. We find that many inversions exhibit anti-correlated field and velocity perturbations, and are thus characteristically Alfvénic, but many also depart strongly from this relationship over an apparent continuum of properties. Inversions depart further from the ‘ideal’ Alfvénic case with increasing r, as more energy is partitioned in the field, rather than the plasma, component of the perturbation. This departure is greatest for inversions with larger density and magnetic field strength changes, and characteristic slow solar wind properties. We find no evidence that inversions which stray further from ‘ideal’ Alfvénicity have different generation processes from those which are more Alfvénic. Instead, different inversion properties could be imprinted based on transport or formation within different solar wind streams.


2020 ◽  
Author(s):  
Olga Gutynska ◽  
Jaroslav Urbář ◽  
Jana Šafránková ◽  
Zdeněk Němeček

<p>Particle reflection at the bow shock provides a source of free energy to drive local instabilities and turbulence within the foreshock. A variety of low-frequency fluctuations (up to 16 mHz) results from the interactions of back-streaming ions with the incoming solar wind flow. We report observations of low-frequency magnetosonic waves observed during intervals of a radial interplanetary magnetic field in the foreshock. A case study of simultaneous dual THEMIS spacecraft observations of asymmetrical fluctuations in V<sub>y</sub> is complemented by a statistical study of similar solar wind deflections in the foreshock.  Our moment calculations do not include the reflected particles as well as heavier ions, revealed the modulation of a solar wind core and deflection of the solar wind in the foreshock. This effect decreases with the distance from the bow shock. We conclude that large asymmetrical Vy velocity component fluctuations are typical for the foreshock formed by the radial IMF. The asymmetry of fluctuations changes the mean direction of the incoming solar wind flow within the foreshock leading to preconditioning prior to its encounter with the bow shock.</p>


Sign in / Sign up

Export Citation Format

Share Document