Gamma-Aminobutyric Acid Antagonism in Visual Cortex: Different Effects on Simple, Complex, and Hypercomplex Neurons

Science ◽  
1973 ◽  
Vol 182 (4107) ◽  
pp. 81-83 ◽  
Author(s):  
J. D. Pettigrew ◽  
J. D. Daniels
2019 ◽  
Author(s):  
Jordan D. Chamberlain ◽  
Holly Gagnon ◽  
Poortata Lalwani ◽  
Kaitlin E. Cassady ◽  
Molly Simmonite ◽  
...  

AbstractAge-related neural dedifferentiation – reduced distinctiveness of neural representations in the aging brain– has been associated with age-related declines in cognitive abilities. But why does neural distinctiveness decline with age? Based on prior work in non-human primates, we hypothesized that the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) declines with age and is associated with neural dedifferentiation. To test this hypothesis, we used magnetic resonance spectroscopy (MRS) to measure GABA and functional MRI (fMRI) to measure neural distinctiveness in the ventral visual cortex in a set of older and younger participants. Relative to younger adults, older adults exhibited lower GABA levels and less distinct activation patterns for faces and houses in the ventral visual cortex. Furthermore, individual differences in GABA within older adults predicted individual differences in neural distinctiveness even after controlling for gray matter volume and age. These results provide novel support for the view that age-related reductions of GABA contribute to age-related reductions in neural distinctiveness (i.e., neural dedifferentiation) in the human ventral visual cortex.Significance StatementNeural representations in the ventral visual cortex are less distinguishable in older compared to younger humans, and this neural dedifferentiation is associated with age-related cognitive deficits. Animal models suggest that reductions in the inhibitory neurotransmitter gamma aminobutyric acid (GABA) may play a role. To investigate this hypothesis, we combined functional magnetic resonance imaging (fMRI) and magnetic resonance spectroscopy (MRS) in a study of the human ventral visual cortex. We observed reduced distinctiveness of neural patterns and reduced GABA levels in older compared to younger adults. Furthermore, older adults with higher GABA levels tended to have more distinctive neural representations. These findings suggest that reduced GABA levels contribute to age-related declines in neural distinctiveness in the human ventral visual cortex.


CNS Spectrums ◽  
2020 ◽  
pp. 1-9
Author(s):  
Jeffery L. Cummings ◽  
D. P. Devanand ◽  
Stephen M. Stahl

Abstract Dementia-related psychosis (DRP) is prevalent across dementias and typically manifests as delusions and/or hallucinations. The mechanisms underlying psychosis in dementia are unknown; however, neurobiological and pharmacological evidence has implicated multiple signaling pathways and brain regions. Despite differences in dementia pathology, the neurobiology underlying psychosis appears to involve dysregulation of a cortical and limbic pathway involving serotonergic, gamma-aminobutyric acid ergic, glutamatergic, and dopaminergic signaling. Thus, an imbalance in cortical and mesolimbic excitatory tone may drive symptoms of psychosis. Delusions and hallucinations may result from (1) hyperactivation of pyramidal neurons within the visual cortex, causing visual hallucinations and (2) hyperactivation of the mesolimbic pathway, causing both delusions and hallucinations. Modulation of the 5-HT2A receptor may mitigate hyperactivity at both psychosis-associated pathways. Pimavanserin, an atypical antipsychotic, is a selective serotonin inverse agonist/antagonist at 5-HT2A receptors. Pimavanserin may prove beneficial in treating the hallucinations and delusions of DRP without worsening cognitive or motor function.


Life Sciences ◽  
1991 ◽  
Vol 49 (15) ◽  
pp. 1053-1060 ◽  
Author(s):  
Alfred T. Townsend ◽  
Danny K. Adams ◽  
Jose' B. Lopez ◽  
Albert W. Kirby

1964 ◽  
Vol 11 (01) ◽  
pp. 064-074 ◽  
Author(s):  
Robert H Wagner ◽  
William D McLester ◽  
Marion Smith ◽  
K. M Brinkhous

Summary1. The use of several amino acids, glycine, alpha-aminobutyric acid, alanine, beta-alanine, and gamma-aminobutyric acid, as plasma protein precipitants is described.2. A specific procedure is detailed for the preparation of canine antihemophilic factor (AHF, Factor VIII) in which glycine, beta-alanine, and gammaaminobutyric acid serve as the protein precipitants.3. Preliminary results are reported for the precipitation of bovine and human AHF with amino acids.


Sign in / Sign up

Export Citation Format

Share Document