Environmental Patterns in the Origins of Higher Taxa: The Post-Paleozoic Fossil Record

Science ◽  
1991 ◽  
Vol 252 (5014) ◽  
pp. 1831-1833 ◽  
Author(s):  
D. JABLONSKI ◽  
D. J. BOTTJER
Keyword(s):  
1992 ◽  
Vol 6 ◽  
pp. 16-16 ◽  
Author(s):  
Richard K. Bambach ◽  
J. John Sepkoski

The first two ranks above the species level in the traditional Linnean hierarchy — the genus and family — are species based: genera have been erected to unify groups of morphologically similar, closely related species and families have been erected to group genera recognized as closely related because of the shared morphologic characteristics of their species. Diversity patterns of traditional genera and families thus appear congruent with those of species in (a) the Recent (e. g., latitudinal gradients in many groups), (b) compilations of all marine taxa for the entire Phanerozoic (including the stage level), (c) comparisons through time within individual taxa (e. g., Foraminifera, Rugosa, Conodonta), and (d) simulation studies. Genera and families often have a more robust fossil record of diversity than species, especially for poorly sampled groups (e. g., echinoids), because of the range-through record of these polytypic taxa. Simulation studies indicate that paraphyly among traditionally defined taxa is not a fatal problem for diversity studies; in fact, when degradation of the quality of the fossil record is modelled, both diversity and rates of origination and extinction are better represented by including paraphyletic taxa than by restricting data to monophyletic clades. This result underscores the utility of traditional rank-based analyses of the history of diversity.In contrast, the three higher ranks of the Linnean hierarchy — orders, classes and phyla — are defined and recognized by key character complexes assumed to be rooted deep in the developmental program and, therefore, considered to be of special significance. These taxa are unified on the basis of body plan and function, not species morphology. Even if paraphyletic, recognition of such taxa is useful because they represent different functional complexes that reflect biological organization and major evolutionary innovations, often with different ecological capacities. Phanerozoic diversity patterns of orders, classes and phyla are not congruent with those of lower taxa; the higher groups each increased rapidly in the early Paleozoic, during the explosive diversification of body plans in the Cambrian, and then remained stable or declined slightly after the Ordovician. The diversity history of orders superficially resembles that of lower taxa, but this is a result only of ordinal turnover among the Echinodermata coupled with ordinal radiation in the Chordata; it is not a highly damped signal derived from the diversity of species, genera, or families. Despite the stability of numbers among post-Ordovician Linnean higher taxa, the diversity of lower taxa within many of these Bauplan groups fluctuated widely, and these diversity patterns signal embedded ecologic information, such as differences in flexibility in filling or utilizing ecospace.Phylogenetic analysis is vital for understanding the origins and genealogical structure of higher taxa. Only in such fashion can convergence and its implications for ecological constraints and/or opportunities be understood. But blind insistence on the use of monophyletic classifications in all studies would obscure some of the important information contained in traditional taxonomic groupings. The developmental modifications that characterize Linnean higher taxa (and traditionally separate them from their paraphyletic ancestral taxa) provide keys to understanding the role of shifting ecology in macroevolutionary success.


Paleobiology ◽  
2018 ◽  
Vol 44 (3) ◽  
pp. 368-384 ◽  
Author(s):  
Roy E. Plotnick ◽  
Peter Wagner

AbstractCertain taxa are noticeably common within collections, widely distributed, and frequently long-lived. We have examined these dominant genera as compared with rarer genera, with a focus on their temporal histories. Using occurrence data from the Paleobiology Database, we determined which genera belonging to six target groups ranked among the most common within each of 49 temporal bins based on occurrences. The turnover among these dominant taxa from bin to bin was then determined for each of these groups, and all six groups when pooled. Although dominant genera are only a small fraction of all genera, the patterns of turnover mimic those seen in much larger compilations of total biodiversity. We also found that differences in patterns of turnover at the top ranks among the higher taxa reflect previously documented comparison of overall turnover among these classes. Both dominant and nondominant genera exhibit, on average, symmetrical patterns of rise and fall between first and last appearances. Dominant genera rarely begin at high ranks, but nevertheless tend to be more common when they first appear than nondominant genera. Moreover, dominant genera rarely are in the top 20 when they last appear, but still typically occupy more localities than nondominant genera occupy in their last interval. The mechanism(s) that produce dominant genera remain unclear. Nearly half of dominant genera are the type genus of a family or subfamily. This is consistent with a simple model of morphological and phylogenetic diversification and sampling.


1999 ◽  
Vol 9 ◽  
pp. 309-318
Author(s):  
Kaustuv Roy

Change has been the rule in the history of life. Mammals today dominate the terrestrial habitats where dinosaurs once held sway. In modern oceans, ecologists can study many species of arthropods, but trilobites are long gone. Using data from the fossil record, David Raup estimated that only about one in a thousand species that ever lived on this planet is still alive today (Raup, 1991). On the other hand, the number of species and higher taxa has increased steadily over geologic time. Thus the history of life is essentially a history of turnover of species, lineages and higher taxa over time.


Paleobiology ◽  
1975 ◽  
Vol 1 (1) ◽  
pp. 82-96 ◽  
Author(s):  
David M. Raup

As Van Valen has demonstrated, the taxonomic survivorship curve is a valuable means of investigating extinction rates in the fossil record. He suggested that within an adaptive zone, related taxa display stochastically constant and equal extinction rates. Such a condition is evidenced by straight survivorship curves for species and higher taxa. Van Valen's methods of survivorship analysis can be improved upon and several suggestions are presented. With proper manipulation of data, it is possible to pool the information from extinct and living taxa to produce a single survivorship curve and therefore a single estimate of extinction rate. If extinction rate is constant at the species level (producing a straight survivorship curve), higher taxa in the same group should be expected to have convex survivorship curves. The constancy of extinction rates (here termed Van Valen's Law) can and should be tested rigorously. Several methods are available, of which the Total Life method of Epstein is particularly effective.


2002 ◽  
Vol 11 ◽  
pp. 249-256
Author(s):  
Kaustuv Roy

Change has been the rule in the history of life. Mammals today dominate the terrestrial habitats where dinosaurs once held sway. In modern oceans, ecologists can study many species of arthropods, but trilobites are long gone. Using data from the fossil record, David Raup estimated that only about one in a thousand species that ever lived on this planet is still alive today (Raup, 1991). On the other hand, the number of species and higher taxa has increased steadily over geologic time. Thus the history of life is essentially a history of turnover of species, lineages, and higher taxa over time.


Paleobiology ◽  
2003 ◽  
Vol 29 (1) ◽  
pp. 26-29 ◽  
Author(s):  
John Alroy

For decades, paleobiologists have treated global diversity estimation as a straightforward problem (Miller 2000): count up the known higher taxa in each geological time interval, make a diversity curve, and go straight ahead to analyzing and interpreting the trends. However, global diversity curves recently have come under attack from all sides. Some researchers argue that although traditional curves are strongly affected by sampling biases (e.g., Smith 2001; Peters and Foote 2002), these biases can be corrected by assembling large, locality-level databases with detailed contextual information (Alroy et al. 2001). Others point to the large gap between true total global richness and the meager head counts the fossil record has to offer, and conclude that workers should focus exclusively on local and regional diversity (Jackson and Johnson 2001). Here I argue that although further fieldwork surely is needed, understanding global diversity in the short term remains a tractable goal—as long as we move quickly to build a discipline-wide, globally extensive paleontological database.


2007 ◽  
Vol 274 (1618) ◽  
pp. 1667-1673 ◽  
Author(s):  
T.S Kemp

Understanding the evolutionary processes responsible for the long treks through morphospace associated with the origin of new higher taxa is hampered by the lack of a realistic and usable model that accounts for long-term phenotypic evolvability. The systems-related concept of correlated progression, in which all the traits are functionally linked and so constrained to evolve by small increments at a time in parallel with each other, provides the basis for such a model. Implications for the process of evolution at high taxonomic level are that: the evolving traits must be considered together as a system, and the exact sequence of incremental changes in characters is indeterminable; there are no identifiable key innovations; selection acts on the phenotype as a whole rather than on individual traits; and the selection force is therefore multidimensional. Application of the model to the pattern of evolution of traits and trait states as revealed by the fossil record of the stem groups of such taxa as mammals, turtles and tetrapods generates realistic testable hypotheses about how such groups evolved.


1990 ◽  
Vol 330 (1257) ◽  
pp. 261-268 ◽  

The fossil record is adequate to determine the general patterns of diversity of genera and higher taxa across geological time, for most groups of organisms. The Linnaean hierarchy, in which most of the fossil groups have been classified, is ideally suited for such studies. Marine invertebrates are represented by three successive faunas that display increased diversities, but lower evolutionary turnovers; perhaps increasing specializations favoured lineages with higher extinction resistance. Tetrapods are also represented by three faunas that display increasing diversities and similar though more complex patterns of decreasing evolutionary turnovers. Tracheophytes have been placed in four Phanerozoic floras with generally increasing diversities, but by contrast with animals display increased species turnover with increasing diversity, perhaps in response to competitive requirements imposed by the successive origination of major clades.


Geology ◽  
2011 ◽  
Vol 39 (10) ◽  
pp. 971-974 ◽  
Author(s):  
B. M. Anderson ◽  
D. Pisani ◽  
A. I. Miller ◽  
K. J. Peterson
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document