The fossil record: a sampler of life’s diversity

1990 ◽  
Vol 330 (1257) ◽  
pp. 261-268 ◽  

The fossil record is adequate to determine the general patterns of diversity of genera and higher taxa across geological time, for most groups of organisms. The Linnaean hierarchy, in which most of the fossil groups have been classified, is ideally suited for such studies. Marine invertebrates are represented by three successive faunas that display increased diversities, but lower evolutionary turnovers; perhaps increasing specializations favoured lineages with higher extinction resistance. Tetrapods are also represented by three faunas that display increasing diversities and similar though more complex patterns of decreasing evolutionary turnovers. Tracheophytes have been placed in four Phanerozoic floras with generally increasing diversities, but by contrast with animals display increased species turnover with increasing diversity, perhaps in response to competitive requirements imposed by the successive origination of major clades.

Paleobiology ◽  
2003 ◽  
Vol 29 (1) ◽  
pp. 26-29 ◽  
Author(s):  
John Alroy

For decades, paleobiologists have treated global diversity estimation as a straightforward problem (Miller 2000): count up the known higher taxa in each geological time interval, make a diversity curve, and go straight ahead to analyzing and interpreting the trends. However, global diversity curves recently have come under attack from all sides. Some researchers argue that although traditional curves are strongly affected by sampling biases (e.g., Smith 2001; Peters and Foote 2002), these biases can be corrected by assembling large, locality-level databases with detailed contextual information (Alroy et al. 2001). Others point to the large gap between true total global richness and the meager head counts the fossil record has to offer, and conclude that workers should focus exclusively on local and regional diversity (Jackson and Johnson 2001). Here I argue that although further fieldwork surely is needed, understanding global diversity in the short term remains a tractable goal—as long as we move quickly to build a discipline-wide, globally extensive paleontological database.


2016 ◽  
Vol 371 (1691) ◽  
pp. 20150221 ◽  
Author(s):  
Sean M. R. Jordan ◽  
Timothy G. Barraclough ◽  
James Rosindell

The historic richness of most taxonomic groups increases substantially over geological time. Explanations for this fall broadly into two categories: bias in the fossil record and elevated net rates of diversification in recent periods. For example, the break up of Pangaea and isolation between continents might have increased net diversification rates. In this study, we investigate the effect on terrestrial diversification rates of the increased isolation between land masses brought about by continental drift. We use ecological neutral theory as a means to study geologically complex scenarios tractably. Our models show the effects of simulated geological events that affect all species equally, without the added complexity of further ecological processes. We find that continental drift leads to an increase in diversity only where isolation between continents leads to additional speciation through vicariance, and where higher taxa with very low global diversity are considered. We conclude that continental drift by itself is not sufficient to account for the increase in terrestrial species richness observed in the fossil record.


1992 ◽  
Vol 6 ◽  
pp. 16-16 ◽  
Author(s):  
Richard K. Bambach ◽  
J. John Sepkoski

The first two ranks above the species level in the traditional Linnean hierarchy — the genus and family — are species based: genera have been erected to unify groups of morphologically similar, closely related species and families have been erected to group genera recognized as closely related because of the shared morphologic characteristics of their species. Diversity patterns of traditional genera and families thus appear congruent with those of species in (a) the Recent (e. g., latitudinal gradients in many groups), (b) compilations of all marine taxa for the entire Phanerozoic (including the stage level), (c) comparisons through time within individual taxa (e. g., Foraminifera, Rugosa, Conodonta), and (d) simulation studies. Genera and families often have a more robust fossil record of diversity than species, especially for poorly sampled groups (e. g., echinoids), because of the range-through record of these polytypic taxa. Simulation studies indicate that paraphyly among traditionally defined taxa is not a fatal problem for diversity studies; in fact, when degradation of the quality of the fossil record is modelled, both diversity and rates of origination and extinction are better represented by including paraphyletic taxa than by restricting data to monophyletic clades. This result underscores the utility of traditional rank-based analyses of the history of diversity.In contrast, the three higher ranks of the Linnean hierarchy — orders, classes and phyla — are defined and recognized by key character complexes assumed to be rooted deep in the developmental program and, therefore, considered to be of special significance. These taxa are unified on the basis of body plan and function, not species morphology. Even if paraphyletic, recognition of such taxa is useful because they represent different functional complexes that reflect biological organization and major evolutionary innovations, often with different ecological capacities. Phanerozoic diversity patterns of orders, classes and phyla are not congruent with those of lower taxa; the higher groups each increased rapidly in the early Paleozoic, during the explosive diversification of body plans in the Cambrian, and then remained stable or declined slightly after the Ordovician. The diversity history of orders superficially resembles that of lower taxa, but this is a result only of ordinal turnover among the Echinodermata coupled with ordinal radiation in the Chordata; it is not a highly damped signal derived from the diversity of species, genera, or families. Despite the stability of numbers among post-Ordovician Linnean higher taxa, the diversity of lower taxa within many of these Bauplan groups fluctuated widely, and these diversity patterns signal embedded ecologic information, such as differences in flexibility in filling or utilizing ecospace.Phylogenetic analysis is vital for understanding the origins and genealogical structure of higher taxa. Only in such fashion can convergence and its implications for ecological constraints and/or opportunities be understood. But blind insistence on the use of monophyletic classifications in all studies would obscure some of the important information contained in traditional taxonomic groupings. The developmental modifications that characterize Linnean higher taxa (and traditionally separate them from their paraphyletic ancestral taxa) provide keys to understanding the role of shifting ecology in macroevolutionary success.


2002 ◽  
Vol 8 ◽  
pp. 195-210 ◽  
Author(s):  
Tomasz K. Baumiller ◽  
Forest J. Gahn

The paleontological literature on marine invertebrates is rich in supposed examples of parasitism and our tabulation shows a nearly even distribution of reported cases through the post-Cambrian Phanerozoic. Slightly lower frequencies characterize the Triassic and Jurassic and higher frequencies the Cretaceous and Tertiary, and the pattern roughly mirrors Sepkoski's (1984) marine diversity curve. The total number of parasitic associations for any geologic period rarely exceeds a dozen, yet few of the reported examples provide explicit criteria distinguishing parasitism from predation, commensalism, or mutualism. We evaluated the published examples using the following criteria: (1) evidence of a long-term relationship between two organisms, (2) benefit of interaction to supposed parasite, and (3) detriment of interaction to the host We found that only in exceptional cases were these criteria fulfilled. One example that provides much information on parasitic interactions involves platyceratids and crinoids and we summarize the evidence for the parasitic interaction between these two groups of organisms.


PalZ ◽  
2021 ◽  
Author(s):  
Carolin Haug ◽  
Joachim T. Haug

AbstractWhip spiders (Amblypygi), as their name suggests, resemble spiders (Araneae) in some aspects, but differ from them by their heart-shaped (prosomal) dorsal shield, their prominent grasping pedipalps, and their subsequent elongate pair of feeler appendages. The oldest possible occurrences of whip spiders, represented by cuticle fragments, date back to the Devonian (c. 385 mya), but (almost) complete fossils are known from the Carboniferous (c. 300 mya) onwards. The fossils include specimens preserved on slabs or in nodules (Carboniferous, Cretaceous) as well as specimens preserved in amber (Cretaceous, Eocene, Miocene). We review here all fossil whip spider specimens, figure most of them as interpretative drawings or with high-quality photographs including 3D imaging (stereo images) to make the three-dimensional relief of the specimens visible. Furthermore, we amend the list by two new specimens (resulting in 37 in total). The fossil specimens as well as modern whip spiders were measured to analyse possible changes in morphology over time. In general, the shield appears to have become relatively broader and the pedipalps and walking appendages have become more elongate over geological time. The morphological details are discussed in an evolutionary framework and in comparison with results from earlier studies.


Paleobiology ◽  
2018 ◽  
Vol 44 (4) ◽  
pp. 638-659
Author(s):  
Harriet B. Drage ◽  
Lukáš Laibl ◽  
Petr Budil

AbstractA large sample of postembryonic specimens of Dalmanitina proaeva elfrida and D. socialis from the Upper Ordovician (Sandbian to Katian) Prague Basin allows for the first reasonably complete ontogenetic sequence of Dalmanitoidea (Phacopina). The material provides an abundance of morphological information, including well-preserved marginal spines in protaspides and meraspides, and hypostome external surfaces throughout. The development of D. proaeva elfrida is unusual due to variability in timing of the first trunk articulation. This broadens our developmental understanding of Phacopina, a diverse group of phacopid trilobites, and also allows us to study the evolution of their specializations in exoskeletal molting behavior. Adult phacopines, unlike most other trilobites, had fused facial sutures. This means that rather than molting through the sutural gape mode, characterized by opening of the facial sutures and separation of the librigenae, they disarticulated the entire cephalon in Salter’s mode of molting. For other phacopine clades (Phacopoidea) the transition to Salter’s mode occurs during the meraspid period or at the onset of holaspis, and its developmental timing is intraspecifically fixed. However, owing to the large sample size, we can see that facial suture fusion likely occurred later in Dalmanitina, usually during the holaspid period, and was intraspecifically variable with holaspides of varying sizes showing unfused sutures. Further, D. proaeva elfrida specimens showed an initial librigenal–rostral plate fusion event, where the librigenae began as separate entities but appear fused with the rostral plate as one structure (the “lower cephalic unit”) from M1, and are discarded as such during molting. Dalmanitoidea is considered to represent the first phacopine divergence, occurring earliest in the fossil record. This material therefore provides insight into how linked morphologies and behaviors evolved, potentially suggesting the timing of facial suture fusion in Phacopina moved earlier during development and became more intraspecifically fixed over geological time.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e4117 ◽  
Author(s):  
Andrea X. González-Reyes ◽  
Jose A. Corronca ◽  
Sandra M. Rodriguez-Artigas

This study examined arthropod community patterns over an altitudinal ecoregional zonation that extended through three ecoregions (Yungas, Monte de Sierras y Bolsones, and Puna) and two ecotones (Yungas-Monte and Prepuna) of Northwestern Argentina (altitudinal range of 2,500 m), and evaluated the abiotic and biotic factors and the geographical distance that could influence them. Pitfall trap and suction samples were taken seasonally in 15 sampling sites (1,500–4,000 m a.s.l) during one year. In addition to climatic variables, several soil and vegetation variables were measured in the field. Values obtained for species richness between ecoregions and ecotones and by sampling sites were compared statistically and by interpolation–extrapolation analysis based on individuals at the same sample coverage level. Effects of predictor variables and the similarity of arthropods were shown using non-metric multidimensional scaling, and the resulting groups were evaluated using a multi-response permutation procedure. Polynomial regression was used to evaluate the relationship between altitude with total species richness and those of hyperdiverse/abundant higher taxa and the latter taxa with each predictor variable. The species richness pattern displayed a decrease in species diversity as the elevation increased at the bottom wet part (Yungas) of our altitudinal zonation until the Monte, and a unimodal pattern of diversity in the top dry part (Monte, Puna). Each ecoregion and ecotonal zone evidenced a particular species richness and assemblage of arthropods, but the latter ones displayed a high percentage of species shared with the adjacent ecoregions. The arthropod elevational pattern and the changes of the assemblages were explained by the environmental gradient (especially the climate) in addition to a geographic gradient (the distance of decay of similarity), demonstrating that the species turnover is important to explain the beta diversity along the elevational gradient. This suggests that patterns of diversity and distribution of arthropods are regulated by the dissimilarity of ecoregional environments that establish a wide range of geographic and environmental barriers, coupled with a limitation of species dispersal. Therefore, the arthropods of higher taxa respond differently to the altitudinal ecoregional zonation.


Paleobiology ◽  
2018 ◽  
Vol 44 (3) ◽  
pp. 368-384 ◽  
Author(s):  
Roy E. Plotnick ◽  
Peter Wagner

AbstractCertain taxa are noticeably common within collections, widely distributed, and frequently long-lived. We have examined these dominant genera as compared with rarer genera, with a focus on their temporal histories. Using occurrence data from the Paleobiology Database, we determined which genera belonging to six target groups ranked among the most common within each of 49 temporal bins based on occurrences. The turnover among these dominant taxa from bin to bin was then determined for each of these groups, and all six groups when pooled. Although dominant genera are only a small fraction of all genera, the patterns of turnover mimic those seen in much larger compilations of total biodiversity. We also found that differences in patterns of turnover at the top ranks among the higher taxa reflect previously documented comparison of overall turnover among these classes. Both dominant and nondominant genera exhibit, on average, symmetrical patterns of rise and fall between first and last appearances. Dominant genera rarely begin at high ranks, but nevertheless tend to be more common when they first appear than nondominant genera. Moreover, dominant genera rarely are in the top 20 when they last appear, but still typically occupy more localities than nondominant genera occupy in their last interval. The mechanism(s) that produce dominant genera remain unclear. Nearly half of dominant genera are the type genus of a family or subfamily. This is consistent with a simple model of morphological and phylogenetic diversification and sampling.


Author(s):  
Jane H. Hodgkinson ◽  
Frank D. Stacey

1999 ◽  
Vol 9 ◽  
pp. 309-318
Author(s):  
Kaustuv Roy

Change has been the rule in the history of life. Mammals today dominate the terrestrial habitats where dinosaurs once held sway. In modern oceans, ecologists can study many species of arthropods, but trilobites are long gone. Using data from the fossil record, David Raup estimated that only about one in a thousand species that ever lived on this planet is still alive today (Raup, 1991). On the other hand, the number of species and higher taxa has increased steadily over geologic time. Thus the history of life is essentially a history of turnover of species, lineages and higher taxa over time.


Sign in / Sign up

Export Citation Format

Share Document