The Orthorhombic Structure of Iron: An in Situ Study at High-Temperature and High-Pressure

Science ◽  
1997 ◽  
Vol 278 (5339) ◽  
pp. 831-834 ◽  
Author(s):  
D. Andrault
2013 ◽  
Vol 33 (3) ◽  
pp. 633-641 ◽  
Author(s):  
A. Friedrich ◽  
W. Morgenroth ◽  
L. Bayarjargal ◽  
E. A. Juarez-Arellano ◽  
B. Winkler ◽  
...  

2012 ◽  
Vol 66 (2) ◽  
pp. 233-236 ◽  
Author(s):  
Erwei Qiao ◽  
Haifei Zheng ◽  
Changxing Long

1998 ◽  
Vol 278-281 ◽  
pp. 612-617 ◽  
Author(s):  
Bogdan F. Palosz ◽  
Svetlana Stelmakh ◽  
Stanislaw Gierlotka ◽  
M. Aloszyna ◽  
Roman Pielaszek ◽  
...  

2012 ◽  
Vol 512-515 ◽  
pp. 671-675 ◽  
Author(s):  
Ai Guo Zhou ◽  
Liang Li ◽  
Tai Chao Su ◽  
Shang Sheng Li

Ti3SiC2, a ternary carbide, was proposed at this paper to use as the binder of polycrystalline diamonds to overcome the weaknesses of traditional metal binders and ceramic binders. Ti3SiC2was first reported to be in-situ synthesized under high pressure (4GPa) and at high temperature (1400°C) (HPHT) from the mixtures of Ti, Si and graphite powders or the mixture of Ti, SiC and graphite powders. Ti3SiC2-damond composites were also made at HPHT from the previous mixtures and diamond particles. TiCx, Ti5Si3Cxand TiSi2were main impurities and/or intermediate products of Ti3SiC2samples synthesized at HPHT. Ti3SiC2content increased as synthesized time increased from 10 min to 60 min. For as-synthesized composites, diamond particles were evenly distributed in matrix. The diamond particles are bonded well with the matrix by three types of interface.


2015 ◽  
Vol 51 (70) ◽  
pp. 13458-13461 ◽  
Author(s):  
Jian Zhi Hu ◽  
Mary Y. Hu ◽  
Zhenchao Zhao ◽  
Suochang Xu ◽  
Aleksei Vjunov ◽  
...  

Perfectly sealed rotors were designed for the widespread application of in situ MAS NMR in catalysis, material synthesis, metabolomics, and more.


2021 ◽  
pp. 1-13
Author(s):  
Wang Xiaoyan ◽  
Zhao Jian ◽  
Yin Qingguo ◽  
Cao Bao ◽  
Zhang Yang ◽  
...  

Summary Achieving effective results using conventional thermal recovery technology is challenging in the deep undisturbed reservoir with extra-heavy oil in the LKQ oil field. Therefore, in this study, a novel approach based on in-situ combustion huff-and-puff technology is proposed. Through physical and numerical simulations of the reservoir, the oil recovery mechanism and key injection and production parameters of early-stage ultraheavy oil were investigated, and a series of key engineering supporting technologies were developed that were confirmed to be feasible via a pilot test. The results revealed that the ultraheavy oil in the LKQ oil field could achieve oxidation combustion under a high ignition temperature of greater than 450°C, where in-situ cracking and upgrading could occur, leading to greatly decreased viscosity of ultraheavy oil and significantly improved mobility. Moreover, it could achieve higher extra-heavy-oil production combined with the energy supplement of flue gas injection. The reasonable cycles of in-situ combustion huff and puff were five cycles, with the first cycle of gas injection of 300 000 m3 and the gas injection volume per cycle increasing in turn. It was predicted that the incremental oil production of a single well would be 500 t in one cycle. In addition, the supporting technologies were developed, such as a coiled-tubing electric ignition system, an integrated temperature and pressure monitoring system in coiled tubing, anticorrosion cementing and completion technology with high-temperature and high-pressure thermal recovery, and anticorrosion injection-production integrated lifting technology. The proposed method was applied to a pilot test in the YS3 well in the LKQ oil field. The high-pressure ignition was achieved in the 2200-m-deep well using the coiled-tubing electric igniter. The maximum temperature tolerance of the integrated monitoring system in coiled tubing reached up to 1200°C, which provided the functions of distributed temperature and multipoint pressure measurement in the entire wellbore. The combination of 13Cr-P110 casing and titanium alloy tubing effectively reduced the high-temperature and high-pressure oxygen corrosion of the wellbore. The successful field test of the comprehensive supporting engineering technologies presents a new approach for effective production in deep extra-heavy-oil reservoirs.


2004 ◽  
Vol 59 (2) ◽  
pp. 202-215 ◽  
Author(s):  
Holger Emme ◽  
Tanja Nikelski ◽  
Thomas Schleid ◽  
Rainer Pöttgen ◽  
Manfred Heinrich Möller ◽  
...  

The new orthorhombic meta-oxoborates RE(BO2)3 (≡REB3O6) (RE = Dy-Lu) have been synthesized under high-pressure and high-temperature conditions in a Walker-type multianvil apparatus at 7.5 GPa and 1100 °C. They are isotypic to the known ambient pressure phase Tb(BO2)3, space group Pnma. In contrast to Dy(BO2)3, which was also obtained in small amounts under high-temperature conditions, the preparation of the higher orthorhombic homologues RE(BO2)3 (RE = Ho-Lu) was only possible using high-pressure. The meta-oxoborates RE(BO2)3 (RE = Dy-Er) were synthesized as pure products, whereas the orthorhombic phases with RE = Tm-Lu were only obtained as byproducts. With the exception of Yb(BO2)3 it was possible to establish single crystal data for all compounds. The results of temperature-resolved in-situ powder-diffraction measurements, DTA, IR-spectroscopic investigations, and magnetic properties are also presented.


Sign in / Sign up

Export Citation Format

Share Document