orthorhombic structure
Recently Published Documents


TOTAL DOCUMENTS

284
(FIVE YEARS 42)

H-INDEX

22
(FIVE YEARS 3)

2021 ◽  
Vol 22 (4) ◽  
pp. 664-686
Author(s):  
M.B. Khanvilkar ◽  
A.K. Nikumbh ◽  
R.A. Pawar ◽  
N.J. Karale ◽  
D.V. Nighot ◽  
...  

In this work, five substituted perovskite such as (Gd0.9Sr0.1) Mn0.8Co0.2O3, Tb0.8Sr0.2FeO3, Gd0.6Sr0.4RuO3, SrCe0.95Y0.05O3, and Mn0.6Co0.4SnO3 were synthesized by tartrate and hydroxide precursor method. The resulting samples were characterized by inductively coupled plasma spectroscopy, energy dispersive X-ray analysis, infrared spectroscopy, thermal analysis, X-ray powder diffraction, transmission electron microscope (TEM), selected field of electron diffraction (SAED), d.c. electrical conductivity, Hall effect, dielectric measurements, and low-temperature magnetization measurements. The X-ray diffraction pattern for all compounds was indicated the formation of single-phase perovskite with orthorhombic structure except Tb0.8Sr0.2FeO3 and Mn0.6Co0.4SnO3 perovskite. These compounds showed a cubic and rhombohedral structure, respectively. The lattice parameter and the unit cell volume slightly decreased as ionic radii decrease in agreement with the lanthanide contraction. The average size of cation ˂ RA ˃, mismatch factor (σ2), and tolerance factor (t) gives the combined effects of disorder and inhomogeneity in these compounds. The average particle size determined from TEM was in the range of 22 to 77 nm for all compounds. The temperature dependence of electrical conductivity for all compounds showed a definite break in 500 K to 610 K. except the Gd0.6Sr0.4RuO3 compound, which corresponds to semiconducting behavior. While the Gd0.6Sr0.4RuO3 sample shows a metallic-like semiconductor. The thermoelectric power and Hall effect measurements for all compounds were n-type semiconductivity except the SrCe0.95Y0.05O3 compound. It showed p-type semiconductivity. The frequency dependence of the dielectric constant and dielectric loss in these substituted perovskites were discussed using the Maxwell-Wagner model. Magnetic studies showed that the thermo-magnetic irreversibility for all compounds.


2021 ◽  
Vol 242 (1) ◽  
Author(s):  
D. Banerjee ◽  
C. C. Dey ◽  
R. Sewak ◽  
S. V. Thakare ◽  
D. Toprek

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Elias Gießelmann ◽  
Rachid S. Touzani ◽  
Bernd Morgenstern ◽  
Oliver Janka

Abstract Single crystals of CaNi2Al8 were obtained during attempts to synthesize CaNi2Al9 from the elements in Nb or Al2O3 crucibles in an induction furnace. The orthorhombic structure of CaNi2Al8 was refined based on single-crystal X-ray diffraction data (Pbam, a = 1252.30(6), b = 1443.73(7), c = 395.78(2) pm, wR2 = 0.0423, 2225 F 2 values, 63 variables) and full atomic ordering was observed. The compositions of the samples were checked by powder X-ray diffraction experiments; no phase pure samples could be obtained. To analyze the bonding situation of the title compound in detail, quantum-chemical calculations were conducted. According to Density Functional Theory, CaNi2Al8 is a intermetallic compound with a polar covalently bonded [Ni2Al8] network showing strong Ni–Al and Al–Al bonding.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 965
Author(s):  
Gabriel L. Murphy ◽  
Philip Kegler ◽  
Eike M. Langer ◽  
Evgeny V. Alekseev

Herein, the novel uranyl selenate and selenite compounds Rb2[(UO2)2(SeO4)3], Rb2[(UO2)3(SeO3)2O2], Rb2[UO2(SeO4)2(H2O)]·2H2O, and (UO2)2(HSeO3)2(H2SeO3)2Se2O5 have been synthesized using either slow evaporation or hydrothermal methods under acidic conditions and their structures were refined using single crystal X-ray diffraction. Rb2[(UO2)2(SeO4)3] synthesized hydrothermally adopts a layered 2D tetragonal structure in space group P42/ncm with a = 9.8312(4) Å, c = 15.4924(9) Å, and V = 1497.38(15) Å, where it consists of UO7 polyhedra coordinated via SeO4 units to create units UO2(SeO4)58− moieties which interlink to create layers in which Rb+ cations reside in the interspace. Rb2[(UO2)3(SeO3)2O2] synthesized hydrothermally adopts a layered 2D triclinic structure in space group P1¯ with a = 7.0116(6) Å, b = 7.0646(6) Å, c = 8.1793(7) Å, α = 103.318(7)°, β = 105.968(7)°, γ = 100.642(7)° and V = 365.48(6) Å3, where it consists of edge sharing UO7, UO8 and SeO3 polyhedra that form [(UO2)3(SeO3)2O2] layers in which Rb+ cations are found in the interlayer space. Rb2[UO2(SeO4)2(H2O)]·2H2O synthesized hydrothermally adopts a chain 1D orthorhombic structure in space group Pmn21 with a = 13.041(3) Å, b = 8.579(2) Å, c = 11.583(2) Å, and V = 1295.9(5) Å3, consisting of UO7 polyhedra that corner share with one H2O and four SeO42− ligands, creating infinite chains. (UO2)2(HSeO3)2(H2SeO3)2Se2O5 synthesized under slow evaporation conditions adopts a 0D orthorhombic structure in space group Cmc21 with a = 28.4752(12) Å, b = 6.3410(3) Å, c = 10.8575(6) Å, and V = 1960.45(16) Å3, consisting of discrete rings of [(UO2)2(HSeO3)2(H2SeO3)2Se2O5]2. (UO2)2(HSeO3)2(H2SeO3)2Se2O5 is apparently only the second example of a uranyl diselenite compound to be reported. A combination of single crystal X-ray diffraction and bond valance sums calculations are used to characterise all samples obtained in this investigation. The structures uncovered in this investigation are discussed together with the broader family of uranyl selenates and selenites, particularly in the context of the role acidity plays during synthesis in coercing specific structure, functional group, and topology formations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Roopali Shekhawat ◽  
Haritha Pamuluri ◽  
Vinod Erkkara Madhavan ◽  
K. Ramesh

AbstractGeTe1−xSex (0 ≤ x ≤ 1.0) alloys have been prepared both in bulk and thin film forms to study the effect of selenium (Se) substitution for tellurium (Te) on the phase change properties. It is observed that with increasing Se substitution in GeTe, the structure transforms from rhombohdral structure to orthorhombic structure. Rietveld Refinement analysis support the phase transformation and show that the short and long bond lengths in crystalline GeTe decrease with increasing Se substitution but the rate of reduction of shorter bond length is more than the longer bond length. The GeTe1−xSex thin films undergo amorphous to crystalline phase change when annealed at high temperatures. The transition temperature shows an increasing trend with the Se substitution. The contrast in electrical resistivity between the amorphous and crystalline states is 104 for GeTe, and with the Se substitution, the contrast increases considerably to 106 for GeTe0.5Se0.5. Devices fabricated with thin films show that the threshold current decreases with the Se substitution indicating a reduction in the power required for WRITE operation. The present study shows that the crystalline structure, resistance, bandgap, transition temperature and threshold voltage of GeTe can be effectively controlled and tuned by the substitution of Te by Se, which is conducive for phase change memory applications.


2021 ◽  
Author(s):  
Jianwen Liang ◽  
Eveline van der Maas ◽  
Jing Luo ◽  
Xiaona Li ◽  
Ning Chen ◽  
...  

Abstract Understanding the relationship between structure, ionic conductivity, and synthesis is the key to the development of solid electrolytes for all-solid-state Lithium batteries. Here, we investigate chloride solid electrolytes with compositions Li3 − 3xM1+xCl6 (-0.14 < x ≤ 0.5, M = Tb, Dy, Ho, Y, Er, Tm). When x > 0.04, a trigonal to orthorhombic phase transition occurs in the isostructural Li-Dy-Cl, Li-Ho-Cl, Li-Y-Cl, Li-Er-Cl and Li-Tm-Cl solid electrolytes. The new orthorhombic phase shows a four-fold increase in ionic conductivity up to 1.3×10− 3 S cm− 1 at room temperature for Li2.73Ho1.09Cl6 (x = 0.09) when compared to the trigonal Li3HoCl6. For isostructural Li-Dy-Cl, Li-Y-Cl, Li-Er-Cl and Li-Tm-Cl solid electrolytes, about one order of magnitude increase in ionic conductivities are observed for the orthorhombic structure compared to the trigonal structure. Using the Li-Ho-Cl components as an example, detailed studies of its structure, phase transition, ionic conductivity, air stability and electrochemical stability have been made. Molecular dynamics simulations based on density functional theory reveal that the different cations arrangement in the orthorhombic structure leads to a higher lithium diffusivity as compared to the trigonal structure, rationalizing the improved ionic conductivities of the new Li-M-Cl electrolytes. All-solid-state batteries of In/Li2.73Ho1.09Cl6/NMC811 demonstrate excellent electrochemical performance at both room temperature and − 10°C. As relevant to the vast number of isostructural halide electrolytes, the present structure control strategy provides guidance for the design of novel halide superionic conductors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dovydas Karoblis ◽  
Aleksej Zarkov ◽  
Edita Garskaite ◽  
Kestutis Mazeika ◽  
Dalis Baltrunas ◽  
...  

AbstractIn the present work, gadolinium substitution effects on the properties of yttrium manganite YxGd1−xMn0.97Fe0.03O3 (x from 0 to 1 with a step of 0.2) synthesized by an aqueous sol–gel method have been investigated. Partial substitution of Mn3+ by 57Fe3+ in the manganite was also performed in order to investigate deeper the structural properties of synthesized compounds applying Mössbauer spectroscopy. It was demonstrated that substitution of Y3+ by Gd3+ ions leads to the changes of structural, magnetic and morphological properties of investigated system. The crystal structure gradually transformed from hexagonal to orthorhombic with an increase of Gd3+ content in the crystal lattice. The mixed phase was obtained when x = 0.6, whereas other compounds were determined to be monophasic. Magnetization measurements revealed paramagnetic behavior of all specimens, however magnetization values were found to be dependent on chemical composition of the samples. Solid solutions with orthorhombic structure revealed higher magnetization values compared to those of hexagonal samples. The highest magnetization was observed for pure GdMn0.97Fe0.03O3. Structural properties were investigated by powder X-ray diffraction, Mössbauer, FTIR and Raman spectroscopies. Morphological features of the synthesized specimens were studied by scanning electron microscopy (SEM).


Sign in / Sign up

Export Citation Format

Share Document