Diminishing Returns from Mutation Supply Rate in Asexual Populations

Science ◽  
1999 ◽  
Vol 283 (5400) ◽  
pp. 404-406 ◽  
Author(s):  
J. Arjan G.
2015 ◽  
Vol 365 ◽  
pp. 23-31 ◽  
Author(s):  
Maria R. Fumagalli ◽  
Matteo Osella ◽  
Philippe Thomen ◽  
Francois Heslot ◽  
Marco Cosentino Lagomarsino

1990 ◽  
Vol 55 (3) ◽  
pp. 199-221 ◽  
Author(s):  
Brian Charlesworth

SummaryMutation-selection balance in a multi-locus system is investigated theoretically, using a modification of Bulmer's infinitesimal model of selection on a normally-distributed quantitative character, taking the number of mutations per individual (n) to represent the character value. The logarithm of the fitness of an individual with n mutations is assumed to be a quadratic, decreasing function of n. The equilibrium properties of infinitely large asexual populations, random-mating populations lacking genetic recombination, and random-mating populations with arbitrary recombination frequencies are investigated. With ‘synergistic’ epistasis on the scale of log fitness, such that log fitness declines more steeply as n increases, it is shown that equilibrium mean fitness is least for asexual populations. In sexual populations, mean fitness increases with the number of chromosomes and with the map length per chromosome. With ‘diminishing returns’ epistasis, such that log fitness declines less steeply as n increases, mean fitness behaves in the opposite way. Selection on asexual variants and genes affecting the rate of genetic recombination in random-mating populations was also studied. With synergistic epistasis, zero recombination always appears to be disfavoured, but free recombination is disfavoured when the mutation rate per genome is sufficiently small, leading to evolutionary stability of maps of intermediate length. With synergistic epistasis, an asexual mutant is unlikely to invade a sexual population if the mutation rate per diploid genome greatly exceeds unity. Recombination is selectively disadvantageous when there is diminishing returns epistasis. These results are compared with the results of previous theoretical studies of this problem, and with experimental data.


2017 ◽  
Author(s):  
Rebeca Navarro ◽  
Silvia Ambrós ◽  
Fernando Martínez ◽  
Santiago F. Elena

AbstractUnderstanding how genetic drift, mutation and selection interplay in determining the evolutionary fate of populations is one of the central questions of Evolutionary Biology. Theory predicts that by increasing the number of coexisting beneficial alleles in a population beyond some point does not necessarily translates into an acceleration in the rate of evolution. This diminishing-returns effect of beneficial genetic variability in microbial asexual populations is known as clonal interference. Clonal interference has been shown to operate in experimental populations of animal RNA viruses replicating in cell cultures. Here we carried out experiments to test whether a similar diminishing-returns of population size on the rate of adaptation exists for a plant RNA virus infecting real multicellular hosts. We have performed evolution experiments with tobacco etch potyvirus in two hosts, the natural and a novel one, at different inoculation sizes and estimated the rates of evolution for two phenotypic fitness-related traits. Firstly, we found that evolution proceeds faster in the novel than in the original host. Secondly, we found the predicted diminishing-returns effect of inoculum size on the rate of evolution for one of the fitness traits, but not for the other, which suggests that selection operates differently on each trait.


2006 ◽  
Vol 27 (4) ◽  
pp. 199-207 ◽  
Author(s):  
Peter Hartmann

Spearman's Law of Diminishing Returns (SLODR) with regard to age was tested in two different databases from the National Longitudinal Survey of Youth. The first database consisted of 6,980 boys and girls aged 12–16 from the 1997 cohort ( NLSY 1997 ). The subjects were tested with a computer-administered adaptive format (CAT) of the Armed Services Vocational Aptitude Battery (ASVAB) consisting of 12 subtests. The second database consisted of 11,448 male and female subjects aged 15–24 from the 1979 cohort ( NLSY 1979 ). These subjects were tested with the older 10-subtest version of the ASVAB. The hypothesis was tested by dividing the sample into Young and Old age groups while keeping IQ fairly constant by a method similar to the one developed and employed by Deary et al. (1996) . The different age groups were subsequently factor-analyzed separately. The eigenvalue of the first principal component (PC1) and the first principal axis factor (PAF1), and the average intercorrelation of the subtests were used as estimates of the g saturation and compared across groups. There were no significant differences in the g saturation across age groups for any of the two samples, thereby pointing to no support for this aspect of Spearman's “Law of Diminishing Returns.”


Author(s):  
Shixing Zhu ◽  
Jiayuan Zhang ◽  
Zhihua Lv ◽  
Mingming Yu

Background: Apigenin, a natural plant flavone, has been shown to possess a variety of biological properties. Objective: In this report, a highly selective and sensitive LC-MS/MS method was developed and validated for the determination of apigenin in rat plasma. Methods: Analysts were separated on the HSS T3 column (1.8 μm 2.1×100 mm) using acetonitrile and 0.1% formic acid in 2 mM ammonium acetate buffer at a supply rate of 0.200 mL/min as eluent in gradient model. Results: Plasma samples were treated by protein precipitation using acetonitrile for the recovery ranging from 86.5% to 90.1% for apigenin. The calibration curves followed linearity in the concentration range of 0.50-500 ng/mL. The inter-day and intra-day precisions at different QC levels within 13.1% and the accuracies ranged from -10.6% to 8.6%. Conclusion: The assay has been successfully applied to the pharmacokinetic study of apigenin in rats.


Author(s):  
Linus Blomqvist ◽  
R. David Simpson

This chapter investigates whether the growing enthusiasm for ecosystem services recently expressed by conservation NGOs and international institutions is supported by evidence. Ecosystem services—the benefits humans receive from nature—have become the darlings of conservation on the assumption that the valuation of selected services may justify protecting land. A critical examination of a random sample of monetary valuations for regulating ecosystem services such as pollution treatment, finds that only onethird can be considered reliable, and that only ten percent of monetary value estimates can be transferred to other contexts. This suggests that the overall evidence base for assigning monetary value to nature is limited. Furthermore, diminishing returns, high opportunity costs, and technological substitutes might limit the amount of conservation that can be justified on the basis financial assessments of ecosystem services. As such, this chapter concludes that ecosystem services as a conservation strategy should not be embraced uncritically.


Sign in / Sign up

Export Citation Format

Share Document