EVOLUTION: A Minimal Set of Folds

Science ◽  
2005 ◽  
Vol 307 (5708) ◽  
pp. 319d-319d
Author(s):  
G. J. Chin
Keyword(s):  
2013 ◽  
Vol 61 (3) ◽  
pp. 569-579 ◽  
Author(s):  
A. Poniszewska-Marańda

Abstract Nowadays, the growth and complexity of functionalities of current information systems, especially dynamic, distributed and heterogeneous information systems, makes the design and creation of such systems a difficult task and at the same time, strategic for businesses. A very important stage of data protection in an information system is the creation of a high level model, independent of the software, satisfying the needs of system protection and security. The process of role engineering, i.e. the identification of roles and setting up in an organization is a complex task. The paper presents the modeling and design stages in the process of role engineering in the aspect of security schema development for information systems, in particular for dynamic, distributed information systems, based on the role concept and the usage concept. Such a schema is created first of all during the design phase of a system. Two actors should cooperate with each other in this creation process, the application developer and the security administrator, to determine the minimal set of user’s roles in agreement with the security constraints that guarantee the global security coherence of the system.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Petr Kravchuk ◽  
Jiaxin Qiao ◽  
Slava Rychkov

Abstract CFTs in Euclidean signature satisfy well-accepted rules, such as the convergent Euclidean OPE. It is nowadays common to assume that CFT correlators exist and have various properties also in Lorentzian signature. Some of these properties may represent extra assumptions, and it is an open question if they hold for familiar statistical-physics CFTs such as the critical 3d Ising model. Here we consider Wightman 4-point functions of scalar primaries in Lorentzian signature. We derive a minimal set of their properties solely from the Euclidean unitary CFT axioms, without using extra assumptions. We establish all Wightman axioms (temperedness, spectral property, local commutativity, clustering), Lorentzian conformal invariance, and distributional convergence of the s-channel Lorentzian OPE. This is done constructively, by analytically continuing the 4-point functions using the s-channel OPE expansion in the radial cross-ratios ρ, $$ \overline{\rho} $$ ρ ¯ . We prove a key fact that |ρ|, $$ \left|\overline{\rho}\right| $$ ρ ¯ < 1 inside the forward tube, and set bounds on how fast |ρ|, $$ \left|\overline{\rho}\right| $$ ρ ¯ may tend to 1 when approaching the Minkowski space.We also provide a guide to the axiomatic QFT literature for the modern CFT audience. We review the Wightman and Osterwalder-Schrader (OS) axioms for Lorentzian and Euclidean QFTs, and the celebrated OS theorem connecting them. We also review a classic result of Mack about the distributional OPE convergence. Some of the classic arguments turn out useful in our setup. Others fall short of our needs due to Lorentzian assumptions (Mack) or unverifiable Euclidean assumptions (OS theorem).


2021 ◽  
pp. 1-10
Author(s):  
Niels Neumann ◽  
Sofia Doello ◽  
Karl Forchhammer

Nitrogen starvation induces developmental transitions in cyanobacteria. Whereas complex multicellular cyanobacteria of the order Nostocales can differentiate specialized cells that perform nitrogen fixation in the presence of oxygenic photosynthesis, non-diazotrophic unicellular strains, such as <i>Synechococcus elongatus</i> or <i>Synechocystis</i> PCC 6803, undergo a transition into a dormant non-growing state. Due to loss of pigments during this acclimation, the process is termed chlorosis. Cells maintain viability in this state for prolonged periods of time, until they encounter a useable nitrogen source, which triggers a highly coordinated awakening process, termed resuscitation. The minimal set of cellular activity that maintains the viability of cells during chlorosis and ensures efficient resuscitation represents the organism’s equivalent of the BIOS, the basic input/output system of a computer, that helps “booting” the operation system after switching on. This review summarizes the recent research in the resuscitation of cyanobacteria, representing a powerful model for the awakening of dormant bacteria.


1999 ◽  
Vol 19 (1) ◽  
pp. 31-33 ◽  
Author(s):  
TAKASHI INABA

An example is given of a one-dimensional foliation (or a flow) on an open surface which admits no minimal set.


2016 ◽  
Vol 26 (08) ◽  
pp. 1650135 ◽  
Author(s):  
C. A. Cardoso ◽  
J. A. Langa ◽  
R. Obaya

In this paper, we describe in detail the global and cocycle attractors related to nonautonomous scalar differential equations with diffusion. In particular, we investigate reaction–diffusion equations with almost-periodic coefficients. The associated semiflows are strongly monotone which allow us to give a full characterization of the cocycle attractor. We prove that, when the upper Lyapunov exponent associated to the linear part of the equations is positive, the flow is persistent in the positive cone, and we study the stability and the set of continuity points of the section of each minimal set in the global attractor for the skew product semiflow. We illustrate our result with some nontrivial examples showing the richness of the dynamics on this attractor, which in some situations shows internal chaotic dynamics in the Li–Yorke sense. We also include the sublinear and concave cases in order to go further in the characterization of the attractors, including, for instance, a nonautonomous version of the Chafee–Infante equation. In this last case we can show exponentially forward attraction to the cocycle (pullback) attractors in the positive cone of solutions.


ChemInform ◽  
2006 ◽  
Vol 37 (5) ◽  
Author(s):  
Christopher G. Levins ◽  
Christian E. Schafmeister

2022 ◽  
pp. 1-37
Author(s):  
Rod Downey ◽  
Matthew Harrison-Trainor
Keyword(s):  

2014 ◽  
Vol 2014 ◽  
pp. 1-19 ◽  
Author(s):  
Trygve Eftestøl ◽  
Lawrence D. Sherman

Background.During resuscitation of cardiac arrest victims a variety of information in electronic format is recorded as part of the documentation of the patient care contact and in order to be provided for case review for quality improvement. Such review requires considerable effort and resources. There is also the problem of interobserver effects.Objective.We show that it is possible to efficiently analyze resuscitation episodes automatically using a minimal set of the available information.Methods and Results.A minimal set of variables is defined which describe therapeutic events (compression sequences and defibrillations) and corresponding patient response events (annotated rhythm transitions). From this a state sequence representation of the resuscitation episode is constructed and an algorithm is developed for reasoning with this representation and extract review variables automatically. As a case study, the method is applied to the data abstraction process used in the King County EMS. The automatically generated variables are compared to the original ones with accuracies≥90%for 18 variables and≥85%for the remaining four variables.Conclusions.It is possible to use the information present in the CPR process data recorded by the AED along with rhythm and chest compression annotations to automate the episode review.


2003 ◽  
Vol 13 (07) ◽  
pp. 1721-1725 ◽  
Author(s):  
Francisco Balibrea ◽  
Roman Hric ◽  
L'ubomír Snoha

The topological structure of minimal sets of continuous maps on graphs, dendrites and dendroids is studied. A full characterization of minimal sets on graphs and a partial characterization of minimal sets on dendrites are given. An example of a minimal set containing an interval on a dendroid is given.


Sign in / Sign up

Export Citation Format

Share Document