Control factor of nuclear cycles in cilate conjugation: cell-to-cell transfer in multicellular complexes

Science ◽  
1975 ◽  
Vol 189 (4196) ◽  
pp. 53-55 ◽  
Author(s):  
A Miyake
Cell Reports ◽  
2021 ◽  
Vol 35 (10) ◽  
pp. 109189
Author(s):  
Eleanna Kara ◽  
Alessandro Crimi ◽  
Anne Wiedmer ◽  
Marc Emmenegger ◽  
Claudia Manzoni ◽  
...  

2020 ◽  
Author(s):  
JVE Chan-Hyams ◽  
JN Copp ◽  
JB Smaill ◽  
AV Patterson ◽  
David Ackerley

© 2018 Elsevier Inc. Gene-directed enzyme-prodrug therapy (GDEPT) employs tumour-tropic vectors including viruses and bacteria to deliver a genetically-encoded prodrug-converting enzyme to the tumour environment, thereby sensitising the tumour to the prodrug. Nitroreductases, able to activate a range of promising nitroaromatic prodrugs to genotoxic metabolites, are of great interest for GDEPT. The bystander effect (cell-to-cell transfer of activated prodrug metabolites) has been quantified for some nitroaromatic prodrugs in mixed multilayer human cell cultures, however while these provide a good model for viral DEPT (VDEPT) they do not inform on the ability of these prodrug metabolites to exit bacterial vectors (relevant to bacterial-DEPT (BDEPT)). To investigate this we grew two Escherichia coli strains in co-culture; an activator strain expressing the nitroreductase E. coli NfsA and a recipient strain containing an SOS-GFP DNA damage responsive gene construct. In this system, induction of GFP by reduced prodrug metabolites can only occur following their transfer from the activator to the recipient cells. We used this to investigate five clinically relevant prodrugs: metronidazole, CB1954, nitro-CBI-DEI, and two dinitrobenzamide mustard prodrug analogues, PR-104A and SN27686. Consistent with the bystander efficiencies previously measured in human cell multilayers, reduced metronidazole exhibited little bacterial cell-to-cell transfer, whereas nitro-CBI-DEI was passed very efficiently from activator to recipient cells post-reduction. However, in contrast with observations in human cell multilayers, the nitrogen mustard prodrug metabolites were not effectively passed between the two bacterial strains, whereas reduced CB1954 was transferred efficiently. Using nitroreductase enzymes that exhibit different biases for the 2- versus 4-nitro substituents of CB1954, we further showed that the 2-nitro reduction products exhibit substantially higher levels of bacterial cell-to-cell transfer than the 4-nitro reduction products, consistent with their relative bystander efficiencies in human cell culture. Overall, our data suggest that prodrugs may differ in their suitability for VDEPT versus BDEPT applications and emphasise the importance of evaluating an enzyme-prodrug partnership in an appropriate context for the intended vector.


Retrovirology ◽  
2008 ◽  
Vol 5 (1) ◽  
pp. 31 ◽  
Author(s):  
Ahidjo Ayouba ◽  
Claude Cannou ◽  
Marie-Thérèse Nugeyre ◽  
Françoise Barré-Sinoussi ◽  
Elisabeth Menu

2005 ◽  
Vol 568 (2) ◽  
pp. 459-468 ◽  
Author(s):  
V. Valiunas ◽  
Y. Y. Polosina ◽  
H. Miller ◽  
I. A. Potapova ◽  
L. Valiuniene ◽  
...  

2011 ◽  
Vol 90 (2) ◽  
pp. A51
Author(s):  
Marc Permanyer ◽  
Ester Ballana ◽  
José A. Esté

2012 ◽  
Vol 428 (4) ◽  
pp. 445-450 ◽  
Author(s):  
Ayako Matsuda ◽  
Naomi Kurono ◽  
Chinatsu Kawano ◽  
Kozue Shirota ◽  
Akiko Hirabayashi ◽  
...  

2000 ◽  
Vol 74 (23) ◽  
pp. 10882-10891 ◽  
Author(s):  
Suryaram Gummuluru ◽  
C. Mathew Kinsey ◽  
Michael Emerman

ABSTRACT We have developed a rapid-turnover culture system where the life span of a human immunodeficiency virus type 1-infected cell is controlled by periodic addition of a cytotoxic agent, mitomycin C. These mitomycin C-exposed cells are cocultured with a constant number of uninfected cells as new targets for the virus. Passage of the virus-infected cells under these conditions led to the emergence of a viral variant that was able to replicate efficiently in this culture system. After biologic and molecular cloning, we were able to identify a single frameshift mutation in the vpu open reading frame that was sufficient for growth of the mutant virus in the rapid-turnover assay. This virus variant spread more efficiently by cell-to-cell transfer than the parental virus did. Electron micrographs of cells infected with the Δvpu virus revealed a large number of mature viral capsids attached to the plasma membrane. The presence of these mature virus particles on the cell surface led to enhanced fusion and formation of giant syncytia with uninfected cells. Enhanced cell-to-cell transfer of the Δvpu virus provides an explanation for the survival of this mutant virus in the rapid-turnover culture system. The in vitro rapid-turnover culture system is a good representation of the in vivo turnover kinetics of infected cells and their continual replacement by host lymphopoietic mechanisms.


Sign in / Sign up

Export Citation Format

Share Document