HOW PLANT BREEDING PROGRAMS COMPLICATE PLANT DISEASE PROBLEMS

Science ◽  
1942 ◽  
Vol 95 (2465) ◽  
pp. 313-316 ◽  
Author(s):  
N. E. STEVENS
tppj ◽  
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jenna Hershberger ◽  
Nicolas Morales ◽  
Christiano C. Simoes ◽  
Bryan Ellerbrock ◽  
Guillaume Bauchet ◽  
...  

Author(s):  
D. E. Riemenschneider ◽  
B. E. Haissig ◽  
E. T. Bingham

Author(s):  
John H. Perkins

In the years after the end of World War II, farmers, agricultural scientists, and policy makers in many countries all knew, or learned, that higher yields of wheat were what they wanted, and they were successful in achieving them. Their specific motivations were different, but their objectives were not. Not only were the objectives clear, but a central method by which the higher yields were to be achieved was plant breeding. Plant breeding itself was an applied science that had to be nested within organizations that supported it and its allies in the agricultural, biological, and engineering sciences. By 1950 wheat breeders believed that the number of factors governing yield was small, which meant that the research avenues likely to be fruitful were also few in number. The amount of water available and the responsiveness to soil fertility, especially nitrogen, were in most cases the key ingredients for higher yields. For wheat, the ability of the plant to resist invasion by fungal pathogens was almost as important as water and soil fertility. Water and fertility were needed in every crop year, but damage from fungal pathogens varied with weather. Thus plant disease was not necessarily a destructive factor every year. Control of water, soil fertility, and plant disease was therefore at the center of research programs in wheat breeding. A wheat breeder would find success if his or her program produced new varieties that gave higher yields within the context of water, soil fertility, and plant disease existing in the area. Ancillary questions also existed and in some cases matched the major factors in importance. Weed control was always a problem, so high-yielding wheat had to have some capacity to resist competition from weeds. Similarly, in some areas and some years, insects could cause damage. Wheat varieties therefore had to be able to withstand them somehow. Other factors of importance to wheat breeders were habit of growth and the color and quality of the grain. Winter wheats were useful in climates that had winters mild enough to allow planting in the fall and thus higher yields the next summer.


2020 ◽  
Vol 12 (6) ◽  
pp. 998 ◽  
Author(s):  
GyuJin Jang ◽  
Jaeyoung Kim ◽  
Ju-Kyung Yu ◽  
Hak-Jin Kim ◽  
Yoonha Kim ◽  
...  

Utilization of remote sensing is a new wave of modern agriculture that accelerates plant breeding and research, and the performance of farming practices and farm management. High-throughput phenotyping is a key advanced agricultural technology and has been rapidly adopted in plant research. However, technology adoption is not easy due to cost limitations in academia. This article reviews various commercial unmanned aerial vehicle (UAV) platforms as a high-throughput phenotyping technology for plant breeding. It compares known commercial UAV platforms that are cost-effective and manageable in field settings and demonstrates a general workflow for high-throughput phenotyping, including data analysis. The authors expect this article to create opportunities for academics to access new technologies and utilize the information for their research and breeding programs in more workable ways.


2010 ◽  
Vol 32 (2) ◽  
pp. 140-145 ◽  
Author(s):  
Juliana Terezinha Caieiro ◽  
Maristela Panobianco ◽  
João Carlos Bespalhok Filho ◽  
Osvaldo de Castro Ohlson

Plant breeding is generally done through sexual reproduction even when the species is propagated asexually for commercial exploitation, as for example, in sugarcane. Therefore, the development of procedures to evaluate sugarcane seed viability is important for plant breeding programs. The objective of this research was to develop a methodology for analyzing the viability of sugarcane seeds (Saccharum spp.). Three crosses were used, two biparental crosses and one polycross. For the germination test study, two substrates (paper and sand) and three constant incubation temperatures (25 ºC, 30 ºC and 35 ºC), in the presence of constant light and also an alternating temperatures (20-30 ºC), with 8 hours light (30 ºC) and 16 hours darkness (20 ºC), were studied. Seedlings were evaluated every five days. The results demonstrated that temperature affected sugarcane seed germination with the most favorable conditions being the alternating temperature (20-30 ºC) and the constant temperature of 30 ºC on a paper substrate.


Crop Science ◽  
2000 ◽  
Vol 40 (5) ◽  
pp. 1241-1246 ◽  
Author(s):  
Michael D. Peel ◽  
Donald C. Rasmusson

2006 ◽  
Vol 113 (6) ◽  
pp. 1121-1130 ◽  
Author(s):  
Benjamin Stich ◽  
Albrecht E. Melchinger ◽  
Hans-Peter Piepho ◽  
Martin Heckenberger ◽  
Hans P. Maurer ◽  
...  

2017 ◽  
Vol 49 (9) ◽  
pp. 1297-1303 ◽  
Author(s):  
John M Hickey ◽  
◽  
Tinashe Chiurugwi ◽  
Ian Mackay ◽  
Wayne Powell

Sign in / Sign up

Export Citation Format

Share Document