Improvement Strategy for Mature Plant Breeding Programs

Crop Science ◽  
2000 ◽  
Vol 40 (5) ◽  
pp. 1241-1246 ◽  
Author(s):  
Michael D. Peel ◽  
Donald C. Rasmusson
tppj ◽  
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jenna Hershberger ◽  
Nicolas Morales ◽  
Christiano C. Simoes ◽  
Bryan Ellerbrock ◽  
Guillaume Bauchet ◽  
...  

Author(s):  
D. E. Riemenschneider ◽  
B. E. Haissig ◽  
E. T. Bingham

2020 ◽  
Vol 12 (6) ◽  
pp. 998 ◽  
Author(s):  
GyuJin Jang ◽  
Jaeyoung Kim ◽  
Ju-Kyung Yu ◽  
Hak-Jin Kim ◽  
Yoonha Kim ◽  
...  

Utilization of remote sensing is a new wave of modern agriculture that accelerates plant breeding and research, and the performance of farming practices and farm management. High-throughput phenotyping is a key advanced agricultural technology and has been rapidly adopted in plant research. However, technology adoption is not easy due to cost limitations in academia. This article reviews various commercial unmanned aerial vehicle (UAV) platforms as a high-throughput phenotyping technology for plant breeding. It compares known commercial UAV platforms that are cost-effective and manageable in field settings and demonstrates a general workflow for high-throughput phenotyping, including data analysis. The authors expect this article to create opportunities for academics to access new technologies and utilize the information for their research and breeding programs in more workable ways.


2010 ◽  
Vol 32 (2) ◽  
pp. 140-145 ◽  
Author(s):  
Juliana Terezinha Caieiro ◽  
Maristela Panobianco ◽  
João Carlos Bespalhok Filho ◽  
Osvaldo de Castro Ohlson

Plant breeding is generally done through sexual reproduction even when the species is propagated asexually for commercial exploitation, as for example, in sugarcane. Therefore, the development of procedures to evaluate sugarcane seed viability is important for plant breeding programs. The objective of this research was to develop a methodology for analyzing the viability of sugarcane seeds (Saccharum spp.). Three crosses were used, two biparental crosses and one polycross. For the germination test study, two substrates (paper and sand) and three constant incubation temperatures (25 ºC, 30 ºC and 35 ºC), in the presence of constant light and also an alternating temperatures (20-30 ºC), with 8 hours light (30 ºC) and 16 hours darkness (20 ºC), were studied. Seedlings were evaluated every five days. The results demonstrated that temperature affected sugarcane seed germination with the most favorable conditions being the alternating temperature (20-30 ºC) and the constant temperature of 30 ºC on a paper substrate.


2006 ◽  
Vol 113 (6) ◽  
pp. 1121-1130 ◽  
Author(s):  
Benjamin Stich ◽  
Albrecht E. Melchinger ◽  
Hans-Peter Piepho ◽  
Martin Heckenberger ◽  
Hans P. Maurer ◽  
...  

2017 ◽  
Vol 49 (9) ◽  
pp. 1297-1303 ◽  
Author(s):  
John M Hickey ◽  
◽  
Tinashe Chiurugwi ◽  
Ian Mackay ◽  
Wayne Powell

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0257213
Author(s):  
Antônio Carlos da Silva Júnior ◽  
Michele Jorge da Silva ◽  
Cosme Damião Cruz ◽  
Isabela de Castro Sant’Anna ◽  
Gabi Nunes Silva ◽  
...  

The present study evaluated the importance of auxiliary traits of a principal trait based on phenotypic information and previously known genetic structure using computational intelligence and machine learning to develop predictive tools for plant breeding. Data of an F2 population represented by 500 individuals, obtained from a cross between contrasting homozygous parents, were simulated. Phenotypic traits were simulated based on previously established means and heritability estimates (30%, 50%, and 80%); traits were distributed in a genome with 10 linkage groups, considering two alleles per marker. Four different scenarios were considered. For the principal trait, heritability was 50%, and 40 control loci were distributed in five linkage groups. Another phenotypic control trait with the same complexity as the principal trait but without any genetic relationship with it and without pleiotropy or a factorial link between the control loci for both traits was simulated. These traits shared a large number of control loci with the principal trait, but could be distinguished by the differential action of the environment on them, as reflected in heritability estimates (30%, 50%, and 80%). The coefficient of determination were considered to evaluate the proposed methodologies. Multiple regression, computational intelligence, and machine learning were used to predict the importance of the tested traits. Computational intelligence and machine learning were superior in extracting nonlinear information from model inputs and quantifying the relative contributions of phenotypic traits. The R2 values ranged from 44.0% - 83.0% and 79.0% - 94.0%, for computational intelligence and machine learning, respectively. In conclusion, the relative contributions of auxiliary traits in different scenarios in plant breeding programs can be efficiently predicted using computational intelligence and machine learning.


Sign in / Sign up

Export Citation Format

Share Document