Dust grains fall from Saturn’s D-ring into its equatorial upper atmosphere

Science ◽  
2018 ◽  
Vol 362 (6410) ◽  
pp. eaat2236 ◽  
Author(s):  
D. G. Mitchell ◽  
M. E. Perry ◽  
D. C. Hamilton ◽  
J. H. Westlake ◽  
P. Kollmann ◽  
...  

The sizes of Saturn’s ring particles range from meters (boulders) to nanometers (dust). Determination of the rings’ ages depends on loss processes, including the transport of dust into Saturn’s atmosphere. During the Grand Finale orbits of the Cassini spacecraft, its instruments measured tiny dust grains that compose the innermost D-ring of Saturn. The nanometer-sized dust experiences collisions with exospheric (upper atmosphere) hydrogen and molecular hydrogen, which forces it to fall from the ring into the ionosphere and lower atmosphere. We used the Magnetospheric Imaging Instrument to detect and characterize this dust transport and also found that diffusion dominates above and near the altitude of peak ionospheric density. This mechanism results in a mass deposition into the equatorial atmosphere of ~5 kilograms per second, constraining the age of the D-ring.

Science ◽  
2020 ◽  
Vol 370 (6518) ◽  
pp. 824-831
Author(s):  
Shane W. Stone ◽  
Roger V. Yelle ◽  
Mehdi Benna ◽  
Daniel Y. Lo ◽  
Meredith K. Elrod ◽  
...  

Mars has lost most of its once-abundant water to space, leaving the planet cold and dry. In standard models, molecular hydrogen produced from water in the lower atmosphere diffuses into the upper atmosphere where it is dissociated, producing atomic hydrogen, which is lost. Using observations from the Neutral Gas and Ion Mass Spectrometer on the Mars Atmosphere and Volatile Evolution spacecraft, we demonstrate that water is instead transported directly to the upper atmosphere, then dissociated by ions to produce atomic hydrogen. The water abundance in the upper atmosphere varied seasonally, peaking in southern summer, and surged during dust storms, including the 2018 global dust storm. We calculate that this transport of water dominates the present-day loss of atomic hydrogen to space and influenced the evolution of Mars’ climate.


Author(s):  
Iannis Dandouras ◽  
Philippe Garnier ◽  
Donald G Mitchell ◽  
Edmond C Roelof ◽  
Pontus C Brandt ◽  
...  

Titan's nitrogen-rich atmosphere is directly bombarded by energetic ions, due to its lack of a significant intrinsic magnetic field. Singly charged energetic ions from Saturn's magnetosphere undergo charge-exchange collisions with neutral atoms in Titan's upper atmosphere, or exosphere, being transformed into energetic neutral atoms (ENAs). The ion and neutral camera, one of the three sensors that comprise the magnetosphere imaging instrument (MIMI) on the Cassini/Huygens mission to Saturn and Titan, images these ENAs like photons, and measures their fluxes and energies. These remote-sensing measurements, combined with the in situ measurements performed in the upper thermosphere and in the exosphere by the ion and neutral mass spectrometer instrument, provide a powerful diagnostic of Titan's exosphere and its interaction with the Kronian magnetosphere. These observations are analysed and some of the exospheric features they reveal are modelled.


1964 ◽  
Vol 42 (11) ◽  
pp. 2035-2047 ◽  
Author(s):  
D. W. Rice ◽  
P. A. Forsyth

Attempts to use the decay of radio signals reflected from individual meteor trails to study the upper atmosphere have revealed a puzzling inconsistency in the signal behavior. An earlier paper pointed out that this inconsistency remained even when the previously postulated sources of error were eliminated. As a result, an irregularly ionized trail model was proposed and shown, by calculation of signal characteristics, to be capable of accounting for the observations. This paper presents results of a new experiment which permitted the determination of the ionization profiles as the meteor trails were formed. The predicted irregularities were found, even for trails which exhibited apparently "ideal" underdense signal characteristics.


1998 ◽  
Vol 11 (2) ◽  
pp. 1022-1022
Author(s):  
P.B. Babadzhanov

Observations in Central Asia in 1965-1966 by both photographic and radar methods allowed a determination of the radiants and orbits of Leonids (Babadzhanov and Getman 1970). Photographs showed that meteoroids undergo quasi-continuous fragmentation (QCF) in the Earth’s atmosphere. Taking account of QCF, the density of the Leonid meteoroids were found to lie between 1 and Agcm-3 the average being 2gcm-3 (Babadzhanov 1994), in agreement with the density range of between 0.2 and 6gcm-3 given by Maas et al (1990) for dust grains from comet P/1 Halley, with values below 0.6 being rare. Further, the icy grains have a density of about 1gcm-3 while silicate grains have a mean density 2.5 times higher.


2021 ◽  
Author(s):  
James O'Donoghue ◽  
Luke Moore ◽  
Tanapat Bhakyapaibul ◽  
Henrik Melin ◽  
Tom Stallard ◽  
...  

<p>Jupiter's upper atmosphere is significantly hotter than expected based on the amount of solar heating it receives. This temperature discrepency is known as the 'energy crisis' due to it's nearly 50-year duration and the fact it also occurs at Saturn, Uranus and Neptune. At Jupiter, magnetosphere-ionosphere coupling gives rise to intense auroral emissions and enormous energy deposition in the magnetic polar regions, so it was presumed long ago that redistribution of this energy could heat the rest of the planet. However, most global circulation models have difficulty redistributing auroral energy globally due to the strong Coriolis forces and ion drag on this rapidly rotating planet. Consequently, other possible heat sources have continued to be studied, such as heating by gravity and acoustic waves emanating from the lower atmosphere. Each global heating mechanism would imprint a unique signature on global temperature gradients, thus revealing the dominant heat source, but these gradients have not been determined due a lack of planet-wide, high-resolution data. The last global map of Jovian upper-atmospheric temperatures was produced using ground-based data taken in 1993, in which the region between 45<sup>o</sup> latitude (north & south) and the poles was represented by just 2 pixels. As a result, those maps did not (or could not) show a clear temperature gradient, and furthermore, they even showed regions of hot atmosphere near the equator, supporting the idea of an equatorial heat source, e.g. gravity and/or acoustic wave heating. Therefore observationally and from a modeling perspective, a concensus has not been reached to date. Here we report new infrared spectroscopy of Jupiter's major upper-atmospheric ion H<sub>3</sub><sup>+</sup>, with a spatial resolution of 2<sup>o</sup> longitude and latitude extending from pole to equator, capable of tracing the global temperature gradients. We find that temperatures decrease steadily from the auroral polar regions to the equator. Further, during a period of enhanced activity possibly driven by a solar wind compression, a high-temperature planetary-scale structure was observed which may be propagating from the aurora. These observations indicate that Jupiter's upper atmosphere is predominantly heated via the redistribution of auroral energy, and therefore that Coriolis forces and ion drag are observably overcome.</p>


Author(s):  
R. A. Hamilton

SynopsisThe temperature gradient in the lower atmosphere can be directly determined by measuring the optical refractive index of the air. This method is suitable for use on the Greenland ice sheet where errors introduced by water vapour are small, and where the strong solar radiation reflected by the snow surface makes it difficult to measure temperature differences over height differences of about I metre.The refraction was measured by observing the apparent vertical angle of each of a set of targets at distances up to 4 km. from a theodolite. The refraction was found to vary linearly with the distance of the target. The true vertical angle to the targets was determined when a second theodolite was available and reciprocal sights could be taken with it from the site of target to the fixed theodolite. The true vertical angle varied with time due to slow descent of the theodolite as the firn slumped; a correction for this was made. The standard error of the temperature gradient measurements was about 1.5 × 10−2 C.° per metre. It is considered that the method could be developed and improved so that over a range of only 100 metres temperature gradients could be measured to an accuracy of about 0·1° C. per metre.


Author(s):  
Petra Koucká Knížová ◽  
Jan Laštovička ◽  
Daniel Kouba ◽  
Zbyšek Mošna ◽  
Katerina Podolská ◽  
...  

The ionosphere represents part of the upper atmosphere. Its variability is observed on a wide-scale temporal range from minutes, or even shorter, up to scales of the solar cycle and secular variations of solar energy input. Ionosphere behavior is predominantly determined by solar and geomagnetic forcing. However, the lower-lying atmospheric regions can contribute significantly to the resulting energy budget. The energy transfer between distant atmospheric parts happens due to atmospheric waves that propagate from their source region up to ionospheric heights. Experimental observations show the importance of the involvement of the lower atmosphere in ionospheric variability studies in order to accurately capture small-scale features of the upper atmosphere. In the Part I Coupling, we provide a brief overview of the influence of the lower atmosphere on the ionosphere and summarize the current knowledge. In the Part II Coupling Evidences Within Ionospheric Plasma—Experiments in Midlatitudes, we demonstrate experimental evidence from mid-latitudes, particularly those based on observations by instruments operated by the Institute of Atmospheric Physics, Czech Academy of Sciences. The focus will mainly be on coupling by atmospheric waves.


Author(s):  
Tushar Suhasaria ◽  
Vito Mennella

Refractory dust grains have an important role to play in the chemistry of star and planet-forming regions. Their surfaces interact with interstellar gas and act as a catalyst for the formation of simple and complex molecules in space. Several mechanisms have been invoked to explain how molecular hydrogen is formed in reactions on dust grain surfaces in different regions of space. In this article, we give an overview of our understanding of the laboratory experiments, conducted over the last 20 years, that deal with H2 formation on interstellar grain analogs in space simulated conditions.


A theory is presented for deriving the speed of sound and wind velocity as a function of height in the upper atmosphere from observations on the travel times of sound waves from accurately located grenades, released during rocket flight, to microphones at surveyed positions on the ground. The theory is taken to a second order of approximation, which can be utilized in practice if lower atmosphere (balloon) measurements are available. By means of the gas law and the vertical equation of motion of the atmosphere, formulae are obtained for deriving temperature, pressure and density from the speed-of-sound profile, and these also may be evaluated to a higher accuracy if lower atmosphere measurements are available. An outline is given of the computational procedure followed in the processing of data on the basis of this theory by means of the Pegasus computer. Methods of calculating the correction to travel times due to the finite wave amplitude are discussed and compared, and the effect of neglecting this correction in a particular set of experimental data is examined. Other errors which may affect the determination of pressure are also discussed. Consistency between the theory and experimental data obtained in 13 Skylark rocket flights at Woomera is checked in two ways: by examining least squares residuals associated with the sound arrivals at various microphones; and by treating the vertical component of air motion as unknown and examining its distribution about zero. The reduction in the least squares residuals which occurs when account is taken of second order terms is evaluated on the basis of these sets of experimental data.


Sign in / Sign up

Export Citation Format

Share Document