icy satellites
Recently Published Documents


TOTAL DOCUMENTS

187
(FIVE YEARS 17)

H-INDEX

35
(FIVE YEARS 2)

Icarus ◽  
2021 ◽  
pp. 114803
Author(s):  
Gianrico Filacchione ◽  
Mauro Ciarniello ◽  
Emiliano D’Aversa ◽  
Fabrizio Capaccioni ◽  
Roger N. Clark ◽  
...  
Keyword(s):  

Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1328
Author(s):  
Katrin Stephan ◽  
Mauro Ciarniello ◽  
Olivier Poch ◽  
Bernard Schmitt ◽  
David Haack ◽  
...  

Laboratory measurements were performed to study the spectral signature of H2O ice between 0.4 and 4.2 µm depending on varying temperatures between 70 and 220 K. Spectral parameters of samples with particle sizes up to ~1360 µm, particle size mixtures, and different particle shapes were analyzed. The band depth (BD) of the major H2O-ice absorptions at 1.04, 1.25, 1.5, and 2 µm offers an excellent indicator for varying particle sizes in pure H2O ice. The spectral changes due to temperature rather, but not exclusively, affect the H2O-ice absorptions located at 1.31, 1.57, and 1.65 µm and the Fresnel reflection peaks at 3.1 and 3.2 µm, which strongly weaken with increasing temperature. As the BDs of the H2O-ice absorptions at 1.31, 1.57, and 1.65 µm increase, the band centers (BCs) of the H2O-ice absorptions at 1.25 and 1.5 µm slightly shift to shorter wavelengths. However, the BCs of the strong H2O-ice absorptions can also be affected by saturation in the case of large particles. The collected spectra provide a useful spectral library for future investigations of icy satellites such as Ganymede and Callisto, the major targets of ESA’s JUICE mission.


2021 ◽  
Author(s):  
Shahid Aslam ◽  
Dina Bower ◽  
Nicolas Gorius ◽  
Tilak Hewagama ◽  
Paul Lucey ◽  
...  

Icarus ◽  
2021 ◽  
pp. 114562
Author(s):  
Christopher S. Arridge ◽  
Joseph W.B. Eggington

2021 ◽  
Author(s):  
Wanying Kang ◽  
Tushar Mittal ◽  
Suyash Bire ◽  
Jean Michel ◽  
John Marshall

Abstract Of profound astrobiological interest is that not only does Enceladus have a water ocean, but it also appears to be salty, important for its likely habitability. Here, we investigate how salinity affects ocean dynamics and equilibrium ice shell geometry and use knowledge of ice shell geometry and tidal heating rates to help constrain ocean salinity. We show that the vertical overturning circulation of the ocean, driven from above by melting and freezing and the temperature dependence of the freezing point of water on pressure, has opposing signs at very low and very high salinities. In both cases, heat and freshwater converges toward the equator, where the ice is thick, acting to homogenise thickness variations. In order to maintain observed ice thickness variations, ocean heat transport should not overwhelm tidal heating rates within the ice, which are small in equatorial regions. This can only happen when the ocean’s salinity has intermediate values, order 20 psu. In this case polar-sinking driven by meridional temperature variations is largely canceled by equatorial-sinking circulation driven by salinity variations and a consistent ocean circulation, ice shell geometry and tidal heating rate can be achieved.


2021 ◽  
Vol 7 (4) ◽  
pp. eaba5749
Author(s):  
Mark Elowitz ◽  
Bhalamurugan Sivaraman ◽  
Amanda Hendrix ◽  
Jen-Iu Lo ◽  
Sheng-Lung Chou ◽  
...  

We present the first analysis of far-ultraviolet reflectance spectra of regions on Rhea’s leading and trailing hemispheres collected by the Cassini Ultraviolet Imaging Spectrograph during targeted flybys. In particular, we aim to explain the unidentified broad absorption feature centred near 184 nm. We have used laboratory measurements of the UV spectroscopy of a set of candidate molecules and found a good fit to Rhea’s spectra with both hydrazine monohydrate and several chlorine-containing molecules. Given the radiation-dominated chemistry on the surface of icy satellites embedded within their planets’ magnetospheres, hydrazine monohydrate is argued to be the most plausible candidate for explaining the absorption feature at 184 nm. Hydrazine was also used as a propellant in Cassini’s thrusters, but the thrusters were not used during icy satellite flybys and thus the signal is believed to not arise from spacecraft fuel. We discuss how hydrazine monohydrate may be chemically produced on icy surfaces.


Author(s):  
Zdenek Futera ◽  
Niall J. English

The high-pressure solid phase of water known as ice VII has recently attracted a lot of attention when its presence was detected in large exoplanets, their icy satellites, and even in Earth's mantle.


Author(s):  
Paul M. Schenk ◽  
Jeffrey M. Moore

Newly processed global imaging and topographic mapping of Uranus's five major satellites reveal differences and similarities to mid-sized satellites at Saturn and Pluto. Three modes of internal heat redistribution are recognized. The broad similarity of Miranda's three oval resurfacing zones to those mapped on Enceladus and (subtly) on Dione are likely due to antipodal diapiric upwelling. Conversely, break-up and foundering of crustal blocks accompanied by extensive (cryo)volcanism is the dominant mode on both Charon and Ariel. Titania's fault network finds parallels on Rhea, Dione, Tethys and possibly Oberon. Differences in the geologic style of resurfacing in the satellite systems (e.g. plains on Charon, Dione, Tethys and perhaps Titania versus ridges on Miranda and Ariel) may be driven by differences in ice composition. Surface processes such as volatile transport may also be indicated by bright and dark materials on Oberon, Umbriel and Charon. The more complete and higher quality observations of the Saturnian and Plutonian mid-sized icy satellites by Cassini and New Horizons reveal a wealth of features and phenomena that cannot be perceived in the more limited Voyager coverage of the Uranian satellites, harbingers of many discoveries awaiting us on a return to Uranus. This article is part of a discussion meeting issue ‘Future exploration of ice giant systems'.


Author(s):  
L. N. Fletcher ◽  
A. A. Simon ◽  
M. D. Hofstadter ◽  
C. S. Arridge ◽  
Ian J. Cohen ◽  
...  

The international planetary science community met in London in January 2020, united in the goal of realizing the first dedicated robotic mission to the distant ice giants, Uranus and Neptune, as the only major class of solar system planet yet to be comprehensively explored. Ice-giant-sized worlds appear to be a common outcome of the planet formation process, and pose unique and extreme tests to our understanding of exotic water-rich planetary interiors, dynamic and frigid atmospheres, complex magnetospheric configurations, geologically-rich icy satellites (both natural and captured), and delicate planetary rings. This article introduces a special issue on ice giant system exploration at the start of the 2020s. We review the scientific potential and existing mission design concepts for an ambitious international partnership for exploring Uranus and/or Neptune in the coming decades. This article is part of a discussion meeting issue ‘Future exploration of ice giant systems’.


Sign in / Sign up

Export Citation Format

Share Document