scholarly journals A triple-star system with a misaligned and warped circumstellar disk shaped by disk tearing

Science ◽  
2020 ◽  
Vol 369 (6508) ◽  
pp. 1233-1238 ◽  
Author(s):  
Stefan Kraus ◽  
Alexander Kreplin ◽  
Alison K. Young ◽  
Matthew R. Bate ◽  
John D. Monnier ◽  
...  

Young stars are surrounded by a circumstellar disk of gas and dust, within which planet formation can occur. Gravitational forces in multiple star systems can disrupt the disk. Theoretical models predict that if the disk is misaligned with the orbital plane of the stars, the disk should warp and break into precessing rings, a phenomenon known as disk tearing. We present observations of the triple-star system GW Orionis, finding evidence for disk tearing. Our images show an eccentric ring that is misaligned with the orbital planes and the outer disk. The ring casts shadows on a strongly warped intermediate region of the disk. If planets can form within the warped disk, disk tearing could provide a mechanism for forming wide-separation planets on oblique orbits.

2020 ◽  
Vol 493 (4) ◽  
pp. 5005-5023 ◽  
Author(s):  
T Borkovits ◽  
S A Rappaport ◽  
T Hajdu ◽  
P F L Maxted ◽  
A Pál ◽  
...  

ABSTRACT We report the discovery and complex analyses of the first two compact hierarchical triple star systems discovered with TESS in or near its southern continuous viewing zone during Year 1. Both TICs 167692429 and 220397947 were previously unknown eclipsing binaries, and the presence of a third companion star was inferred from eclipse timing variations exhibiting signatures of strong third-body perturbations and, in the first system, also from eclipse depth variations. We carried out comprehensive analyses, including the simultaneous photodynamical modelling of TESS and archival ground-based WASP light curves, as well as eclipse timing variation curves. Also, for the first time, we included in the simultaneous fits multiple star spectral energy distribution data and theoretical PARSEC stellar isochrones, taking into account Gaia DR2 parallaxes and catalogued metallicities. We find that both systems have twin F-star binaries and a lower mass tertiary star. In the TIC 167692429 system, the inner binary is moderately inclined (imut = 27°) with respect to the outer orbit, and the binary versus outer (triple) orbital periods are 10.3 versus 331 d, respectively. The mutually inclined orbits cause a driven precession of the binary orbital plane that leads to the disappearance of binary eclipses for long intervals. In the case of TIC 220397947, the two orbital planes are more nearly aligned and the inner versus outer orbital periods are 3.5 and 77 d, respectively. In the absence of radial velocity observations, we were unable to calculate highly accurate masses and ages for the two systems. According to stellar isochrones TIC 167692429 might be either a pre-main sequence (MS) or an older post-MS system. In the case of TIC 220397947, our solution prefers a young pre-MS scenario.


1997 ◽  
Vol 485 (1) ◽  
pp. 350-358 ◽  
Author(s):  
Ning Liu ◽  
Douglas R. Gies ◽  
Ying Xiong ◽  
Reed L. Riddle ◽  
William G. Bagnuolo, Jr. ◽  
...  

2003 ◽  
Vol 402 (3) ◽  
pp. 1043-1053 ◽  
Author(s):  
V. Aarum Ulvås ◽  
O. Engvold

1987 ◽  
Vol 115 ◽  
pp. 239-253 ◽  
Author(s):  
L.F. Rodríguez

We review the observational evidence for interstellar and circumstellar size gaseous structures that appear to be collimating the bipolar outflows observed in regions of star formation. In particular, there is growing evidence for circumstellar disk-like objects that may be related to a protoplanetary cloud like the one that once surrounded the Sun. There are similarities between these disks around young stars and that found around the main sequence star β Pictoris. Both flattened structures around L1551 IRS5 and β Pictoris appear to have an inner “hole” with radius of a few tens of AU. On the other hand, there is observational support for focusing and collimation processes acting on the same source from tens of AU (circumstellar dimensions) to tenths of pc (interstellar dimensions).


2018 ◽  
Vol 14 (S345) ◽  
pp. 87-90
Author(s):  
O. Fehér ◽  
Á. Kóspál ◽  
P. Ábrahám ◽  
M. R. Hogerheijde ◽  
Ch. Brinch ◽  
...  

AbstractThe earliest phases of star formation are characterised by intense mass accretion from the circumstellar disk to the central star. One group of young stellar objects, the FU Orionis-type stars exhibit accretion rate peaks accompanied by bright eruptions. The occurance of these outbursts might solve the luminosity problem of protostars, play a key role in accumulating the final star mass, and have a significant effect on the parameters of the envelope and the disk. In the framework of the Structured Accretion Disks ERC project, we are conducting a systematic investigation of these sources with millimeter interferometry to examine whether they represent normal young stars in exceptional times or they are unusual objects. Our results show that FU Orionis-type stars can be similar to both Class I and Class II systems and may be in a special evolutionary phase between the two classes with their infall-driven episodic eruptions being the main driving force of the transition.


2011 ◽  
Vol 142 (1) ◽  
pp. 21 ◽  
Author(s):  
Theo A. ten Brummelaar ◽  
David P. O'Brien ◽  
Brian D. Mason ◽  
Christopher D. Farrington ◽  
Alexander W. Fullerton ◽  
...  

1997 ◽  
Vol 114 ◽  
pp. 805 ◽  
Author(s):  
B. Zuckerman ◽  
Richard A. Webb ◽  
E. E. Becklin ◽  
Ian S. McLean ◽  
Matthew A. Malkan
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document