scholarly journals TICs 167692429 and 220397947: the first compact hierarchical triple stars discovered with TESS

2020 ◽  
Vol 493 (4) ◽  
pp. 5005-5023 ◽  
Author(s):  
T Borkovits ◽  
S A Rappaport ◽  
T Hajdu ◽  
P F L Maxted ◽  
A Pál ◽  
...  

ABSTRACT We report the discovery and complex analyses of the first two compact hierarchical triple star systems discovered with TESS in or near its southern continuous viewing zone during Year 1. Both TICs 167692429 and 220397947 were previously unknown eclipsing binaries, and the presence of a third companion star was inferred from eclipse timing variations exhibiting signatures of strong third-body perturbations and, in the first system, also from eclipse depth variations. We carried out comprehensive analyses, including the simultaneous photodynamical modelling of TESS and archival ground-based WASP light curves, as well as eclipse timing variation curves. Also, for the first time, we included in the simultaneous fits multiple star spectral energy distribution data and theoretical PARSEC stellar isochrones, taking into account Gaia DR2 parallaxes and catalogued metallicities. We find that both systems have twin F-star binaries and a lower mass tertiary star. In the TIC 167692429 system, the inner binary is moderately inclined (imut = 27°) with respect to the outer orbit, and the binary versus outer (triple) orbital periods are 10.3 versus 331 d, respectively. The mutually inclined orbits cause a driven precession of the binary orbital plane that leads to the disappearance of binary eclipses for long intervals. In the case of TIC 220397947, the two orbital planes are more nearly aligned and the inner versus outer orbital periods are 3.5 and 77 d, respectively. In the absence of radial velocity observations, we were unable to calculate highly accurate masses and ages for the two systems. According to stellar isochrones TIC 167692429 might be either a pre-main sequence (MS) or an older post-MS system. In the case of TIC 220397947, our solution prefers a young pre-MS scenario.

2020 ◽  
Vol 496 (4) ◽  
pp. 4624-4636 ◽  
Author(s):  
T Borkovits ◽  
S A Rappaport ◽  
T G Tan ◽  
R Gagliano ◽  
T Jacobs ◽  
...  

ABSTRACT We report the discovery in TESS Sectors 3 and 4 of a compact triply eclipsing triple star system. TIC 209409435 is a previously unknown eclipsing binary with a period of 5.717 d, and the presence of a third star in an outer eccentric orbit of 121.872-d period was found from two sets of third-body eclipses and from eclipse timing variations. The latter exhibits signatures of strong third-body perturbations. After the discovery, we obtained follow-up ground-based photometric observations of several binary eclipses as well as another of the third-body eclipses. We carried out comprehensive analyses, including the simultaneous photodynamical modelling of TESS and ground-based light curves (including both archival WASP data, and our own follow-up measurements), as well as eclipse timing variation curves. Also, we have included in the simultaneous fits multiple star spectral energy distribution data and theoretical PARSEC stellar isochrones. We find that the inner binary consists of near twin stars of mass 0.90 M⊙ and radius 0.88 R⊙. The third star is just 9 per cent more massive and 18 per cent larger in radius. The inner binary has a rather small eccentricity, while the outer orbit has e = 0.40. The inner binary and outer orbit have inclination angles within 0.1° and 0.2° of 90°, respectively. The mutual inclination angle is ≲1/4°. All of these results were obtained without radial velocity observations.


2018 ◽  
Vol 617 ◽  
pp. L2 ◽  
Author(s):  
A. Müller ◽  
M. Keppler ◽  
Th. Henning ◽  
M. Samland ◽  
G. Chauvin ◽  
...  

Context. The observation of planets in their formation stage is a crucial but very challenging step in understanding when, how, and where planets form. PDS 70 is a young pre-main sequence star surrounded by a transition disk, in the gap of which a planetary-mass companion has recently been discovered. This discovery represents the first robust direct detection of such a young planet, possibly still at the stage of formation. Aims. We aim to characterize the orbital and atmospheric properties of PDS 70 b, which was first identified on May 2015 in the course of the SHINE survey with SPHERE, the extreme adaptive-optics instrument at the VLT. Methods. We obtained new deep SPHERE/IRDIS imaging and SPHERE/IFS spectroscopic observations of PDS 70 b. The astrometric baseline now covers 6 yr, which allowed us to perform an orbital analysis. For the first time, we present spectrophotometry of the young planet which covers almost the entire near-infrared range (0.96–3.8 μm). We use different atmospheric models covering a large parameter space in temperature, log g, chemical composition, and cloud properties to characterize the properties of the atmosphere of PDS 70 b. Results. PDS 70 b is most likely orbiting the star on a circular and disk coplanar orbit at ~22 au inside the gap of the disk. We find a range of models that can describe the spectrophotometric data reasonably well in the temperature range 1000–1600 K and log g no larger than 3.5 dex. The planet radius covers a relatively large range between 1.4 and 3.7 RJ with the larger radii being higher than expected from planet evolution models for the age of the planet of 5.4 Myr. Conclusions. This study provides a comprehensive data set on the orbital motion of PDS 70 b, indicating a circular orbit and a motion coplanar with the disk. The first detailed spectral energy distribution of PDS 70 b indicates a temperature typical of young giant planets. The detailed atmospheric analysis indicates that a circumplanetary disk may contribute to the total planetflux.


2014 ◽  
Vol 9 (S307) ◽  
pp. 389-390
Author(s):  
Coralie Neiner ◽  

AbstractUVMag is a medium-size space telescope equipped with a high-resolution spectropolarimetrer working in the UV and visible domains. It will be proposed to ESA for a future M mission. It will allow scientists to study all types of stars as well as e.g. exoplanets and the interstellar medium. It will be particularly useful for massive stars, since their spectral energy distribution peaks in the UV. UVMag will allow us to study massive stars and their circumstellar environment (in particular the stellar wind) spectroscopically in great details. Moreover, with UVMag's polarimetric capabilities we will be able, for the first time, to measure the magnetic field of massive stars simultaneously at the stellar surface and in the wind lines, i.e. to completely map their magnetosphere.


2019 ◽  
Vol 207 ◽  
pp. 02001
Author(s):  
Anna Franckowiak

In September 22, 2017, IceCube released a public alert announcing the detection of a 290 TeV neutrino track event with an angular uncertainty of one square degree (90% containment). A multi-messenger follow-up campaign was initiated resulting in the detection of a GeV gamma-ray flare by the Fermi Large Area Telescope positionally consistent with the location of the known Bl Lac object, TXS 0506+056 , located only 0.1 degrees from the best-fit neutrino position. The probability of finding a GeV gamma-ray flare in coincidence with a high-energy neutrino event assuming a correlation of the neutrino flux with the gamma-ray energy flux in the energy band between 1 and 100 GeV was calculated to be 3σ (after trials correction). Following the detection of the flaring blazar the imaging air Cherenkov telescope MAGIC detected the source for the first time in the > 100 GeV gamma-ray band. The activity of the source was confirmed in X-ray, optical and radio wavelength. Several groups have developed lepto-hadronic models which succeed to explain the multi-messenger spectral energy distribution.


2019 ◽  
Vol 490 (1) ◽  
pp. 634-656 ◽  
Author(s):  
Raphael Shirley ◽  
Yannick Roehlly ◽  
Peter D Hurley ◽  
Veronique Buat ◽  
María del Carmen Campos Varillas ◽  
...  

ABSTRACT We present an optical to near-infrared (NIR) selected astronomical catalogue covering 1270 deg2. This is the first attempt to systematically combine data from 23 of the premier extragalactic survey fields – the product of a vast investment of telescope time. The fields are those imaged by the Herschel Space Observatory that form the Herschel Extragalactic Legacy Project (HELP). Our catalogue of 170 million objects is constructed by a positional cross-match of 51 public surveys. This high-resolution optical, NIR, and mid-infrared catalogue is designed for photometric redshift estimation, extraction of fluxes in lower resolution far-infrared maps, and spectral energy distribution modelling. It collates, standardizes, and provides value added derived quantities including corrected aperture magnitudes and astrometry correction over the Herschel extragalactic wide fields for the first time. $grizy$ fluxes are available on all fields with g-band data reaching $5\sigma$ point-source depths in a 2 arcsec aperture of 23.5, 24.4, and 24.6 (AB) mag at the 25th, 50th, and 75th percentiles, by area covered, across all HELP fields. It has K or $K_s$ coverage over 1146 deg2 with depth percentiles of 20.2, 20.4, and 21.0 mag, respectively. The IRAC Ch 1 band is available over 273 deg2 with depth percentiles of 17.7, 21.4, and 22.2 mag, respectively. This paper defines the ‘masterlist’ objects for the first data release (DR1) of HELP. This large sample of standardized total and corrected aperture fluxes, uniform quality flags, and completeness measures provides large well-understood statistical samples over the full Herschel extragalactic sky.


2019 ◽  
Vol 489 (2) ◽  
pp. 1644-1666 ◽  
Author(s):  
D Windemuth ◽  
E Agol ◽  
A Ali ◽  
F Kiefer

Abstract We report on the properties of eclipsing binaries (EBs) from the Kepler mission with a newly developed photometric modelling code, which uses the light curve, spectral energy distribution of each binary, and stellar evolution models to infer stellar masses without the need for radial velocity (RV) measurements. We present solutions and posteriors to orbital and stellar parameters for 728 systems, forming the largest homogeneous catalogue of full Kepler binary parameter estimates to date. Using comparisons to published RV measurements, we demonstrate that the inferred properties (e.g. masses) are reliable for well-detached main-sequence (MS) binaries, which make up the majority of our sample. The fidelity of our inferred parameters degrades for a subset of systems not well described by input isochrones, such as short-period binaries that have undergone interactions, or binaries with post-MS components. Additionally, we identify 35 new systems which show evidence of eclipse timing variations, perhaps from apsidal motion due to binary tides or tertiary companions. We plan to subsequently use these models to search for and constrain the presence of circumbinary planets in Kepler EB systems.


2013 ◽  
Vol 8 (S299) ◽  
pp. 76-77
Author(s):  
S. Wolff ◽  
M. Perrin ◽  
K. Stapelfeldt ◽  
G. Duchêne ◽  
J. Krist ◽  
...  

AbstractWe present detailed models of the edge-on protoplanetary disk ESO Hα 569 (SSTgbs J111110.7-764157) from resolved scattered light images from HST and a complete spectral energy distribution. Data was obtained as part of an HST campaign to catalogue edge-on disks around young stars in nearby star forming regions (HST program 12514, PI: Karl Stapelfeldt). We confirm that this object is an optically thick edge-on disk around a young star with an outer radius of 125 AU. Using full radiative transfer models, we probe the distribution of dust grains and overall shape of the disk (inclination, scale height, dust mass, maximum particle size, inner radius, flaring exponent and surface/volume density exponent).


2019 ◽  
Vol 624 ◽  
pp. A127 ◽  
Author(s):  
Idel Waisberg ◽  
Jason Dexter ◽  
Pierre Olivier-Petrucci ◽  
Guillaume Dubus ◽  
Karine Perraut

Context. The microquasar SS 433 is well known for its precessing, relativistic, and highly collimated baryonic jets, which manifest in its optical spectrum as pairs of hydrogen and helium emission lines moving with large Doppler shifts. Depending on their heating mechanism, the optical jet bullets may serve as a probe of the collimated radiation coming from the inner region close to the compact object, and which is not directly visible to observers on Earth. Aims. We aim to better understand the baryonic jet phenomenon in SS 433, in particular the properties of the optical bullets and their interaction with the ionizing collimated radiation. Methods. The optical interferometer VLTI/GRAVITY has allowed us to spatially resolve the optical jets in SS 433 for the first time. We present here the second such observation taken over three nights in July 2017. In addition, we used the X-shooter spectrograph at VLT to study the optical bullets in SS 433 in detail. Over the full wavelength range 0.3−2.5 μm, we identified up to twenty pairs of jet lines observed simultaneously, which we modeled with the spectral synthesis code Cloudy. Results. GRAVITY reveals elongated exponential-like radial spatial profiles for the optical jets on scales ≲1−10 mas, suggestive of a heating mechanism acting throughout a long portion of the jet and naturally explained by photoionization by the collimated radiation. We also spatially resolve the movement of the optical bullets for the first time, detecting more extended jet components corresponding to previous ejections. Cloudy photoionization models can explain the spatial intensity profiles measured with GRAVITY and the emission line ratios from X-shooter, and constrain the properties of the optical bullets and the ionizing radiation. We find that the latter must peak in the UV with an isotropic luminosity (as inferred by a face-on observer) ∼1041 erg s−1. Provided that the X-ray spectral energy distribution is sufficiently hard, the collimated X-ray luminosity could still be high enough so that the face-on observer would see SS 433 as ultraluminous X-ray source and it would still be compatible with the H/He/He+ ionization balance of the optical bullets. The kinetic power in the optical jets is constrained to 2−20 × 1038 erg s−1, and the extinction in the optical jets to AV = 6.7 ± 0.1. We suggest there may be substantial AV ≳ 1 and structured circumstellar extinction in SS 433, likely arising from dust formed in equatorial outflows.


Science ◽  
2020 ◽  
Vol 369 (6508) ◽  
pp. 1233-1238 ◽  
Author(s):  
Stefan Kraus ◽  
Alexander Kreplin ◽  
Alison K. Young ◽  
Matthew R. Bate ◽  
John D. Monnier ◽  
...  

Young stars are surrounded by a circumstellar disk of gas and dust, within which planet formation can occur. Gravitational forces in multiple star systems can disrupt the disk. Theoretical models predict that if the disk is misaligned with the orbital plane of the stars, the disk should warp and break into precessing rings, a phenomenon known as disk tearing. We present observations of the triple-star system GW Orionis, finding evidence for disk tearing. Our images show an eccentric ring that is misaligned with the orbital planes and the outer disk. The ring casts shadows on a strongly warped intermediate region of the disk. If planets can form within the warped disk, disk tearing could provide a mechanism for forming wide-separation planets on oblique orbits.


2018 ◽  
Vol 620 ◽  
pp. A72
Author(s):  
M. Wolf ◽  
H. Kučáková ◽  
P. Zasche ◽  
J. Vraštil ◽  
K. Hoňková ◽  
...  

We present the next results of our long-term observational project to analyze the variations in the orbital periods of low-mass eclipsing binaries. About 70 new precise mid-eclipse times recorded with a CCD were obtained for two eclipsing binaries with short orbital periods: GU Boo (P = 0.​d49) and YY Gem (0.​d81). Observed-minus-calculated diagrams of the stars were analyzed using all reliable timings, and new parameters of the light-time effect were obtained. We derived for the first time or improved the short orbital periods of possible third bodies of 11 and 54 years for these low-mass binaries, respectively. We calculated that the minimum masses of the third components are close to 50 MJup, which corresponds to the mass of brown dwarfs. The multiplicity of these systems also plays an important role in the precise determination of their physical parameters.


Sign in / Sign up

Export Citation Format

Share Document