scholarly journals Activity of LBM415 Compared to Those of 11 Other Agents against Haemophilus Species

2006 ◽  
Vol 50 (7) ◽  
pp. 2323-2329 ◽  
Author(s):  
Tatiana Bogdanovich ◽  
Kathy A. Smith ◽  
Catherine Clark ◽  
Glenn A. Pankuch ◽  
Gengrong Lin ◽  
...  

ABSTRACT When tested against 254 Haemophilus influenzae strains, LBM415, a peptide deformylase inhibitor, gave MIC50 and MIC90 values of 2.0 μg/ml and 8.0 μg/ml, respectively. The MICs were independent of β-lactam or quinolone susceptibility and the presence or absence of macrolide efflux or ribosomal protein mutations. The MICs of LBM415 against 23 H. parainfluenzae strains were similar to those against H. influenzae. In contrast, erythromycin, azithromycin, and clarithromycin gave unimodal MIC distributions, and apart from β-lactamase-negative, ampicillin-resistant strains, all strains were susceptible to the β-lactams tested. Apart from selected quinolone-resistant strains, all strains were susceptible to ciprofloxacin, levofloxacin, gatifloxacin, moxifloxacin, and gemifloxacin. Resistance to trimethoprim-sulfamethoxazole was common. The potencies of all drugs against 23 H. parainfluenzae strains were similar to those against H. influenzae. Time-kill studies with 10 Haemophilus strains showed LBM415 to be bactericidal at 2× the MIC against 8 of 10 strains after 24 h. For comparison, the macrolides and β-lactams were bactericidal against 8 to 10 strains each at 2× the MIC after 24 h. Quinolones were bactericidal against all 10 strains tested at 2× the MIC after 24 h. Against six H. influenzae strains, postantibiotic effects for LBM415 lasted between 0.8 and 2.2 h. In multistep resistance selection studies, LBM415 produced resistant clones in 7 of the 10 strains tested, with MICs ranging from 4 to 64 μg/ml. No mutations in deformylase (def) and formyltransferase (fmt) genes were detected in any of the LBM415-resistant mutants.

2004 ◽  
Vol 48 (11) ◽  
pp. 4103-4112 ◽  
Author(s):  
Vlatka Matic ◽  
Klaudia Kosowska ◽  
Bulent Bozdogan ◽  
Linda M. Kelly ◽  
Kathy Smith ◽  
...  

ABSTRACT The MICs of GW 773546, GW 708408, and telithromycin for 164 macrolide-susceptible and 161 macrolide-resistant pneumococci were low. The MICs of GW 773546, GW 708408, and telithromycin for macrolide-resistant strains were similar, irrespective of the resistance genotypes of the strains. Clindamycin was active against all macrolide-resistant strains except those with erm(B) and one strain with a 23S rRNA mutation. GW 773546, GW 708408, and telithromycin at two times their MICs were bactericidal after 24 h for 7 to 8 of 12 strains. Serial passages of 12 strains in the presence of sub-MICs yielded 54 mutants, 29 of which had changes in the L4 or L22 protein or the 23S rRNA sequence. Among the macrolide-susceptible strains, resistant mutants developed most rapidly after passage in the presence of clindamycin, GW 773546, erythromycin, azithromycin, and clarithromycin and slowest after passage in the presence of GW 708408 and telithromycin. Selection of strains for which MICs were ≥0.5 μg/ml from susceptible parents occurred only with erythromycin, azithromycin, clarithromycin, and clindamycin; 36 resistant clones from susceptible parent strains had changes in the sequences of the L4 or L22 protein or 23S rRNA. No mef(E) strains yielded resistant clones after passage in the presence of erythromycin and azithromycin. Selection with GW 773546, GW 708408, telithromycin, and clindamycin in two mef(E) strains did not raise the erythromycin, azithromycin, and clarithromycin MICs more than twofold. There were no change in the ribosomal protein (L4 or L22) or 23S rRNA sequences for 15 of 18 mutants selected for macrolide resistance; 3 mutants had changes in the L22-protein sequence. GW 773546, GW 708408, and telithromycin selected clones for which MICs were 0.03 to >2.0 μg/ml. Single-step studies showed mutation frequencies <5.0 × 10−10 to 3.5 × 10−7 for GW 773546, GW 708408, and telithromycin for macrolide-susceptible strains and 1.1 × 10−7 to >4.3 × 10−3 for resistant strains. The postantibiotic effects of GW 773546, GW 708408, and telithromycin were 2.4 to 9.8 h.


2017 ◽  
Vol 61 (3) ◽  
Author(s):  
D. J. Farrell ◽  
H. S. Sader ◽  
P. R. Rhomberg ◽  
N. E. Scangarella-Oman ◽  
R. K. Flamm

ABSTRACT Gepotidacin (formerly GSK2140944) is a novel, first-in-class, triazaacenaphthylene antibacterial that inhibits bacterial DNA gyrase and topoisomerase IV via a unique mechanism and has demonstrated in vitro activity against Neisseria gonorrhoeae, including drug-resistant strains, and also targets pathogens associated with other conventional and biothreat infections. Broth microdilution was used to evaluate the MIC and minimum bactericidal concentration (MBC) activity of gepotidacin and comparators against 25 N. gonorrhoeae strains (including five ciprofloxacin-nonsusceptible strains). Gepotidacin activity was also evaluated against three N. gonorrhoeae strains (including a ciprofloxacin-nonsusceptible strain) for resistance development, against three N. gonorrhoeae strains (including two tetracycline- and azithromycin-nonsusceptible strains) using time-kill kinetics and checkerboard methods, and against two N. gonorrhoeae strains for the investigation of postantibiotic (PAE) and subinhibitory (PAE-SME) effects. The MIC50 and MIC90 for gepotidacin against the 25 N. gonorrhoeae isolates tested were 0.12 and 0.25 μg/ml, respectively. The MBC50 and MBC90 for gepotidacin were 0.25 and 0.5 μg/ml, respectively. Gepotidacin was bactericidal, and single-step resistance selection studies did not recover any mutants, indicating a low rate of spontaneous single-step resistance. For combinations of gepotidacin and comparators tested using checkerboard methods, there were no instances where antagonism occurred and only one instance of synergy (with moxifloxacin; fractional inhibitory concentration, 0.375). This was not confirmed by in vitro time-kill studies. The PAE for gepotidacin against the wild-type strain ranged from 0.5 to >2.5 h, and the PAE-SME was >2.5 h. These in vitro data indicate that further study of gepotidacin is warranted for potential use in treating infections caused by N. gonorrhoeae.


2003 ◽  
Vol 47 (12) ◽  
pp. 3815-3824 ◽  
Author(s):  
Frederick A. Browne ◽  
Bülent Bozdogan ◽  
Catherine Clark ◽  
Linda M. Kelly ◽  
Lois Ednie ◽  
...  

ABSTRACT Agar dilution MIC determination was used to compare the activity of DK-507k with those of ciprofloxacin, levofloxacin, gatifloxacin, moxifloxacin, sitafloxacin, amoxicillin, cefuroxime, erythromycin, azithromycin, and clarithromycin against 113 penicillin-susceptible, 81 penicillin-intermediate, and 67 penicillin-resistant pneumococci (all quinolone susceptible). DK-507k and sitafloxacin had the lowest MICs of all quinolones against quinolone-susceptible strains (MIC at which 50% of isolates were inhibited [MIC50] and MIC90 of both, 0.06 and 0.125 μg/ml, respectively), followed by moxifloxacin, gatifloxacin, levofloxacin, and ciprofloxacin. MICs of β-lactams and macrolides rose with those of penicillin G. Against 26 quinolone-resistant pneumococci with known resistance mechanisms, DK-507k and sitafloxacin were also the most active quinolones (MICs, 0.125 to 1.0 μg/ml), followed by moxifloxacin, gatifloxacin, levofloxacin, and ciprofloxacin. Mutations in quinolone resistance-determining regions of quinolone-resistant strains were in the usual regions of the parC and gyrA genes. Time-kill testing showed that both DK-507k and sitafloxacin were bactericidal against all 12 quinolone-susceptible and -resistant strains tested at twice the MIC at 24 h. Serial broth passages in subinhibitory concentrations of 10 strains for a minimum of 14 days showed that development of resistant mutants (fourfold or greater increase in the original MIC) occurred most rapidly for ciprofloxacin, followed by moxifloxacin, DK-507k, gatifloxacin, sitafloxacin, and levofloxacin. All parent strains demonstrated a fourfold or greater increase in initial MIC in<50 days. MICs of DK-507k against resistant mutants were lowest, followed by those of sitafloxacin, moxifloxacin, gatifloxacin, ciprofloxacin, and levofloxacin. Four strains were subcultured in subinhibitory concentrations of each drug for 50 days: MICs of DK-507k against resistant mutants were lowest, followed by those of sitafloxacin, moxifloxacin, gatifloxacin, levofloxacin, and ciprofloxacin. Exposure to DK-507k and sitafloxacin resulted in mutations, mostly in gyrA.


2003 ◽  
Vol 47 (10) ◽  
pp. 3270-3274 ◽  
Author(s):  
Glenn A. Pankuch ◽  
Linda M. Kelly ◽  
Gengrong Lin ◽  
Andre Bryskier ◽  
Catherine Couturier ◽  
...  

ABSTRACT MIC methodology was used to test the antibacterial activity of XRP 2868, a new oral combination of two semisynthetic streptogramins, RPR 132552A and RPR 202868, compared to activities of other antibacterial agents against pneumococci, Haemophilus influenzae, and Haemophilus parainfluenzae. For 261 pneumococci, XRP 2868 and pristinamycin MICs were similar, irrespective of penicillin G and erythromycin A susceptibilities (MIC at which 50% of isolates were inhibited [MIC50], 0.25 μg/ml; MIC90, 0.5 μg/ml), while quinupristin/dalfopristin had MICs which were 1 to 2 dilutions higher. Single components of both XRP 2868 and quinupristin/dalfopristin had higher MICs. Erythromycin A, azithromycin, clarithromycin, and clindamycin MICs were higher for penicillin G-intermediate and -resistant than -susceptible pneumococci. Against 150 H. influenzae strains, all compounds tested had unimodal MIC distributions. XRP 2868 had an overall MIC50 of 0.25 μg/ml and an MIC90 of 1.0 μg/ml, with no differences between β-lactamase-positive, β-lactamase-negative, and β-lactamase-negative ampicillin-resistant strains. Of note was the similarly low activity of one of its components, RPR 132552A. Pristinamycin and quinupristin/dalfopristin had MICs of 0.125 to 8.0 μg/ml; quinupristin alone had MICs of 8.0 to >64.0 μg/ml, and dalfopristin had MICs of 1.0 to >64.0 μg/ml. Erythromycin A, azithromycin, and clarithromycin had modal MICs of 4.0, 1.0, and 8.0 μg/ml, respectively. MICs of all compounds against H. parainfluenzae were 1 to 2 dilutions higher than against H. influenzae. XRP 2868 showed potent activity against pneumococci and Haemophilus strains irrespective of their susceptibility to other agents.


2006 ◽  
Vol 50 (6) ◽  
pp. 2050-2057 ◽  
Author(s):  
Tatiana Bogdanovich ◽  
Catherine Clark ◽  
Lois Ednie ◽  
Gengrong Lin ◽  
Kathy Smith ◽  
...  

ABSTRACT Ceftobiprole, a broad-spectrum pyrrolidinone-3-ylidenemethyl cephem currently in phase III clinical trials, had MICs between 0.008 μg/ml and 8.0 μg/ml for 321 clinical isolates of Haemophilus influenzae and between ≤0.004 μg/ml and 1.0 μg/ml for 49 clinical isolates of Moraxella catarrhalis. Ceftobiprole MIC50 and MIC90 values for H. influenzae were 0.06 μg/ml and 0.25 μg/ml for β-lactamase-positive strains (n = 262), 0.03 μg/ml and 0.25 μg/ml for β-lactamase-negative strains (n = 40), and 0.5 μg/ml and 2.0 μg/ml for β-lactamase-negative ampicillin-resistant strains (n = 19), respectively. Ceftobiprole MIC50 and MIC90 values for β-lactamase-positive M. catarrhalis strains (n = 40) were 0.12 μg/ml and 0.5 μg/ml, respectively, whereas the ceftobiprole MIC range for β-lactamase-negative M. catarrhalis strains (n = 9) was ≤0.004 to 0.03 μg/ml. Ceftriaxone MICs usually were generally at least twofold lower than those of ceftobiprole, whereas amoxicillin-clavulanate MICs usually were higher than those of ceftobiprole. Azithromycin and telithromycin had unimodal MIC distributions against H. influenzae, with MIC90 values of azithromycin and telithromycin of 2 μg/ml and 4 μg/ml, respectively. Except for selected quinolone-nonsusceptible H. influenzae strains, moxifloxacin proved highly active, with MIC90 values of 0.12 μg/ml. Time-kill analyses showed that ceftobiprole, ceftriaxone, cefpodoxime, amoxicillin-clavulanate, azithromycin, telithromycin, and moxifloxacin were bactericidal at 2× MIC by 24 h against all 10 H. influenzae strains surveyed. Only modest increases in MICs were found for H. influenzae or M. catarrhalis clones after 50 serial passages in the presence of subinhibitory concentrations of ceftobiprole, and single-passage selection showed that the selection frequency of H. influenzae or M. catarrhalis clones with elevated ceftobiprole MICs is quite low.


2005 ◽  
Vol 49 (8) ◽  
pp. 3325-3333 ◽  
Author(s):  
Tatiana Bogdanovich ◽  
Duygu Esel ◽  
Linda M. Kelly ◽  
Bülent Bozdogan ◽  
Kim Credito ◽  
...  

ABSTRACT The in vitro activity of DX-619, a new des-F(6)-quinolone, was tested against staphylococci and compared to those of other antimicrobials. DX-619 had the lowest MIC ranges/MIC50s/MIC90s (μg/ml) against 131 Staphylococcus aureus strains (≤0.002 to 2.0/0.06/0.5) and 128 coagulase-negative staphylococci (0.004 to 0.25/0.016/0.125). Among strains tested, 76 S. aureus strains and 51 coagulase-negative staphylococci were resistant to ciprofloxacin. DX-619 had the lowest MIC50/MIC90 values against 127 quinolone-resistant staphylococci (0.125/0.5), followed by sitafloxacin (0.5/4), moxifloxacin (2/8), gatifloxacin (4/16), levofloxacin (16/>32), and ciprofloxacin (>32/>32). Raised quinolone MICs were associated with mutations in GyrA (S84L) and single or double mutations in GrlA (S80F or Y; E84K, G, or V) in all S. aureus strains tested. A recent vancomycin-resistant S. aureus (VRSA) strain (Hershey) was resistant to available quinolones and was inhibited by DX-619 at 0.25 μg/ml and sitafloxacin at 1.0 μg/ml. Vancomycin (except VRSA), linezolid, ranbezolid, tigecycline, and quinupristin-dalfopristin were active against all strains, and teicoplanin was active against S. aureus but less active against coagulase-negative staphylococci. DX-619 produced resistant mutants with MICs of 1 to >32μ g/ml after <50 days of selection compared to 16 to> 32 μg/ml for ciprofloxacin, sitafloxacin, moxifloxacin, and gatifloxacin. DX-619 and sitafloxacin were also more active than other tested drugs against selected mutants and had the lowest mutation frequencies in single-step resistance selection. DX-619 and sitafloxacin were bactericidal against six quinolone-resistant (including the VRSA) and seven quinolone-susceptible strains tested, whereas gatifloxacin, moxifloxacin, levofloxacin, and ciprofloxacin were bactericidal against 11, 10, 7, and 5 strains at 4× MIC after 24 h, respectively. DX-619 was also bactericidal against one other VRSA strain, five vancomycin-intermediate S. aureus strains, and four vancomycin-intermediate coagulase-negative staphylococci. Linezolid, ranbezolid, and tigecycline were bacteriostatic and quinupristin-dalfopristin, teicoplanin, and vancomycin were bactericidal against two, eight, and nine strains, and daptomycin and oritavancin were rapidly bactericidal against all strains, including the VRSA. DX-619 has potent in vitro activity against staphylococci, including methicillin-, ciprofloxacin-, and vancomycin-resistant strains.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Miseon Park ◽  
Fatemeh Rafii

Fluoroquinolone resistance affects toxin production ofClostridium perfringensstrains differently. To investigate the effect of fluoroquinolone resistance selection on global changes in metabolic activities and drug susceptibilities, fourC. perfringensstrains and their norfloxacin-, ciprofloxacin-, and gatifloxacin-resistant mutants were compared in nearly 2000 assays, using phenotype microarray plates. Variations among mutant strains resulting from resistance selection were observed in all aspects of metabolism. Carbon utilization, pH range, osmotic tolerance, and chemical sensitivity of resistant strains were affected differently in the resistant mutants depending on both the bacterial genotype and the fluoroquinolone to which the bacterium was resistant. The susceptibilities to gentamicin and erythromycin of all resistant mutants except one increased, but some resistant strains were less susceptible to amoxicillin, cefoxitin, ceftriaxone, chloramphenicol, and metronidazole than their wild types. Sensitivity to ethidium bromide decreased in some resistant mutants and increased in others. Microarray analysis of two gatifloxacin-resistant mutants showed changes in metabolic activities that were correlated with altered expression of various genes. Both the chemical structures of fluoroquinolones and the genomic makeup of the wild types influenced the changes found in resistant mutants, which may explain some inconsistent reports of the effects of therapeutic use of fluoroquinolones on clinical isolates of bacteria.


2004 ◽  
Vol 48 (11) ◽  
pp. 4113-4119 ◽  
Author(s):  
Klaudia Kosowska ◽  
Kim Credito ◽  
Glenn A. Pankuch ◽  
Dianne Hoellman ◽  
Gengrong Lin ◽  
...  

ABSTRACT The MIC at which 50% of strains are inhibited (MIC50) and the MIC90 of GW 773546, a novel macrolide, were 1.0 and 2.0 μg/ml, respectively, for 223 β-lactamase-positive, β-lactamase-negative, and β-lactamase-negative ampicillin-resistant Haemophilus influenzae strains. The MIC50s and MIC90s of GW 708408, a second novel macrolide, and telithromycin, an established ketolide, were 2.0 and 4.0 μg/ml, respectively, while the MIC50 and MIC90 of azithromycin were 1.0 and 2.0 μg/ml, respectively. The MIC50 and MIC90 of erythromycin were 4.0 and 8.0 μg/ml, respectively; and those of clarithromycin were 4.0 and 16.0 μg/ml, respectively. All compounds except telithromycin were bactericidal (99.9% killing) against nine strains at two times the MIC after 24 h. Telithromycin was bactericidal against eight of the nine strains. In addition, both novel macrolides and telithromycin at two times the MIC showed 99% killing of all nine strains after 12 h and 90% killing of all strains after 6 h. After 24 h, all drugs were bactericidal against four to seven strains when they were tested at the MIC. Ten of 11 strains tested by multistep selection analysis yielded resistant clones after 14 to 43 passages with erythromycin. Azithromycin gave resistant clones of all strains after 20 to 50 passages, and clarithromycin gave resistant clones of 9 of 11 strains after 14 to 41 passages. By comparison, GW 708408 gave resistant clones of 9 of 11 strains after 14 to 44 passages, and GW 773546 gave resistant clones of 10 of 11 strains after 14 to 45 passages. Telithromycin gave resistant clones of 7 of 11 strains after 18 to 45 passages. Mutations mostly in the L22 and L4 ribosomal proteins and 23S rRNA were detected in resistant strains selected with all compounds, with alterations in the L22 protein predominating. Single-step resistance selection studies at the MIC yielded spontaneous resistant mutants at frequencies of 1.5 × 10−9 to 2.2 × 10−6 with GW 773546, 1.5 × 10−9 to 6.0 × 10−4 with GW 708408, and 7.1 × 10−9 to 3.8 × 10−4 with telithromycin, whereas the frequencies were 1.3 × 10−9 to 6.0 × 10−4 with erythromycin and azithromycin and 2.0 × 10−9 to 2.0 × 10−3 with clarithromycin. Alterations in the L22 protein (which were predominant) and the L4 protein were present in mutants selected by the single-step selection process. The postantibiotic effects of GW 773546, GW 708408, and telithromycin for seven H. influenzae strains were 6.6 h (range, 5.2 to 8.8 h), 4.7 h (range, 2.6 to 6.9 h), and 6.4 h (range, 3.8 to 9.7 h), respectively. The results of in vitro studies obtained with both novel macrolides were similar to those obtained with telithromycin and better than those obtained with older macrolides.


Author(s):  
Pierre Danneels ◽  
Maria Concetta Postorino ◽  
Alessio Strazzulla ◽  
Nabil Belfeki ◽  
Aurelia Pitch ◽  
...  

Introduction. Treatment of Haemophilus influenzae (Hi) pneumonia is on concern because resistance to amoxicillin is largely diffused. This study describes the evolution of resistance to amoxicillin and amoxicillin/clavulanic acid (AMC) in Hi isolates and characteristics of patients with Hi severe pneumonia. Methods. A monocentric retrospective observational study including patients from 2008 to 2017 with severe pneumonia hospitalized in ICU. Evolution of amoxicillin and AMC susceptibility was showed. Characteristics of patients with Hi pneumonia were compared to characteristics of patients with Streptococcus pneumoniae (Sp) pneumonia, as reference. Risk factors for amoxicillin resistance in Hi were investigated. Results. Overall, 113 patients with Hi and 132 with Sp pneumonia were included. The percentages of AMC resistance among Hi strains decreased over the years (from 10% in 2008-2009 to 0% in 2016-2017) while resistance to amoxicillin remained stable at 20%. Also, percentages of Sp resistant strains for amoxicillin decreased over years (from 25% to 3%). Patients with Hi pneumonia experienced higher prevalence of bronchitis (18% vs. 8%, p=0.02, chronic obstructive pulmonary disease (43% vs. 30% p=0.03), HAP (18% vs. 7%, p=0.01, ventilator-associated pneumonia (27% vs. 17%, p=0.04, and longer duration of mechanical ventilation (8 days vs. 6 days, p=0.04) than patients with Sp pneumonia. Patients with Sp pneumonia had more frequently local complications than patients with Hi pneumonia (17% vs. 7%, p=0.03). De-escalation of antibiotics was more frequent in patients with Sp than in patients with Hi (67% vs. 53%, p=0.03). No risk factors were associated with amoxicillin resistance among patients with Hi pneumonia. Conclusions. Amoxicillin resistance was stable over time, but no risk factors were detected. AMC resistance was extremely low, suggesting that AMC could be used for empiric treatment of Hi pneumonia, as well as other molecules, namely, cephalosporins. Patients with Hi pneumonia had more pulmonary comorbidities and severe diseases than patients with Sp pneumonia.


1975 ◽  
Vol 21 (10) ◽  
pp. 1587-1594 ◽  
Author(s):  
R. A. Venezia ◽  
R. G. Robertson

During bacteriophage studies on Haemophilus influenzae, it was observed that encapsulated type b and unencapsulated Rb strains released a bactericidal substance active against types a, c, d, e, and f H. influenzae, non-typable H. influenzae strains, other Haemophilus species, and certain members of the Enterobacteriaceae. The bactericidal activity was assayed by a plaque test utilizing an Rd strain as an indicator lawn and was also demonstrated in mixed broth cultures of a producer strain and an indicator strain. Immediate lysis of sensitive bacteria by the factor was not evident. The factor is sensitive to trypsin but resistant to deoxyribonuclease, treatment with 2-mercaptoethanol, lipase, α-amylase, and heating in a 100 °C water bath for 20 min. The activity is not dependent upon increased Ca2+ or Mg2+ concentration as is necessary for HP1C1 and S2 phage propagation. The bactericidal factor is not pelleted by high-speed centrifugation at 150 000 × g for 6 h. Treatment with ultraviolet light or mitomycin C does not result in observable phage, phage-like particles, or increased bactericidal activity. The bactericidal factor is not a typical small molecular weight "colicin-like" bacteriocin in that it is not inducible, has a wider range of activity, and does not kill by "single-hit" kinetics. On preliminary characterization, it is a thermostable protein toxic to certain bacterial strains.


Sign in / Sign up

Export Citation Format

Share Document