scholarly journals Antipneumococcal Activity of DK-507k, a New Quinolone, Compared with the Activities of 10 Other Agents

2003 ◽  
Vol 47 (12) ◽  
pp. 3815-3824 ◽  
Author(s):  
Frederick A. Browne ◽  
Bülent Bozdogan ◽  
Catherine Clark ◽  
Linda M. Kelly ◽  
Lois Ednie ◽  
...  

ABSTRACT Agar dilution MIC determination was used to compare the activity of DK-507k with those of ciprofloxacin, levofloxacin, gatifloxacin, moxifloxacin, sitafloxacin, amoxicillin, cefuroxime, erythromycin, azithromycin, and clarithromycin against 113 penicillin-susceptible, 81 penicillin-intermediate, and 67 penicillin-resistant pneumococci (all quinolone susceptible). DK-507k and sitafloxacin had the lowest MICs of all quinolones against quinolone-susceptible strains (MIC at which 50% of isolates were inhibited [MIC50] and MIC90 of both, 0.06 and 0.125 μg/ml, respectively), followed by moxifloxacin, gatifloxacin, levofloxacin, and ciprofloxacin. MICs of β-lactams and macrolides rose with those of penicillin G. Against 26 quinolone-resistant pneumococci with known resistance mechanisms, DK-507k and sitafloxacin were also the most active quinolones (MICs, 0.125 to 1.0 μg/ml), followed by moxifloxacin, gatifloxacin, levofloxacin, and ciprofloxacin. Mutations in quinolone resistance-determining regions of quinolone-resistant strains were in the usual regions of the parC and gyrA genes. Time-kill testing showed that both DK-507k and sitafloxacin were bactericidal against all 12 quinolone-susceptible and -resistant strains tested at twice the MIC at 24 h. Serial broth passages in subinhibitory concentrations of 10 strains for a minimum of 14 days showed that development of resistant mutants (fourfold or greater increase in the original MIC) occurred most rapidly for ciprofloxacin, followed by moxifloxacin, DK-507k, gatifloxacin, sitafloxacin, and levofloxacin. All parent strains demonstrated a fourfold or greater increase in initial MIC in<50 days. MICs of DK-507k against resistant mutants were lowest, followed by those of sitafloxacin, moxifloxacin, gatifloxacin, ciprofloxacin, and levofloxacin. Four strains were subcultured in subinhibitory concentrations of each drug for 50 days: MICs of DK-507k against resistant mutants were lowest, followed by those of sitafloxacin, moxifloxacin, gatifloxacin, levofloxacin, and ciprofloxacin. Exposure to DK-507k and sitafloxacin resulted in mutations, mostly in gyrA.

2006 ◽  
Vol 50 (6) ◽  
pp. 2064-2071 ◽  
Author(s):  
Klaudia Kosowska-Shick ◽  
Kim Credito ◽  
Glenn A. Pankuch ◽  
Gengrong Lin ◽  
Bülent Bozdogan ◽  
...  

ABSTRACT DW-224a is a new broad-spectrum quinolone with excellent antipneumococcal activity. Agar dilution MIC was used to test the activity of DW-224a compared to those of penicillin, ciprofloxacin, levofloxacin, gatifloxacin, moxifloxacin, gemifloxacin, amoxicillin-clavulanate, cefuroxime, and azithromycin against 353 quinolone-susceptible pneumococci. The MICs of 29 quinolone-resistant pneumococci with defined quinolone resistance mechanisms against seven quinolones and an efflux mechanism were also tested. DW-224a was the most potent quinolone against quinolone-susceptible pneumococci (MIC50, 0.016 μg/ml; MIC90, 0.03 μg/ml), followed by gemifloxacin, moxifloxacin, gatifloxacin, levofloxacin, and ciprofloxacin. β-Lactam MICs rose with those of penicillin G, and azithromycin resistance was seen mainly in strains with raised penicillin G MICs. Against the 29 quinolone-resistant strains, DW-224a had the lowest MICs (0.06 to 1 μg/ml) compared to those of gemifloxacin, clinafloxacin, moxifloxacin, gatifloxacin, levofloxacin, and ciprofloxacin. DW-224a at 2× MIC was bactericidal after 24 h against eight of nine strains tested. Other quinolones gave similar kill kinetics relative to higher MICs. Serial passages of nine strains in the presence of sub-MIC concentrations of DW-224a, moxifloxacin, levofloxacin, ciprofloxacin, gatifloxacin, gemifloxacin, amoxicillin-clavulanate, cefuroxime, and azithromycin were performed. DW-224a yielded resistant clones similar to moxifloxacin and gemifloxacin but also yielded lower MICs. Azithromycin selected resistant clones in three of the five parents tested. Amoxicillin-clavulanate and cefuroxime did not yield resistant clones after 50 days.


1996 ◽  
Vol 40 (7) ◽  
pp. 1653-1656 ◽  
Author(s):  
G A Pankuch ◽  
C Lichtenberger ◽  
M R Jacobs ◽  
P C Appelbaum

Previous time-kill studies have shown that RP 59500 is rapidly bactericidal against pneumococci. To extend these findings, the activities of RP 59500, its two components RP 57669 RP 54476, penicillin G, erythromycin and sparfloxacin against 26 penicillin-susceptible, 25 penicillin-intermediate, and 25 penicillin-intermediate, and 25 penicillin-resistant pneumococci were determined by the agar dilution MIC and the time-kill testing methodologies within 10 min (ca. 0.2 h) and at 1 and 2 h. Respective agar dilution MICs at which 90% of isolates are inhibited for penicillin-susceptible, -intermediate, and -resistant strains were as follows: penicillin G, 0.03, 1, and 4 micrograms/ml;RP 59500, 1, 1, and 1 microgram/ml; RP 57669, 8, 32, and 16 micrograms/ml; RP 54476, > 128, > 128, and > 128 micrograms/ml; erythromycin, 0.06, 2, and > 128 micrograms/ml; and sparfloxacin, 1, 0.5, and 0.5 microgram/ml. RP 59500 was equally active (MIC at which 90% of isolates are inhibited, 1.0 microgram/ml) against erythromycin-susceptible and -resistant strains. Time-kill testing results showed that only RP 59500 at one to four times the MIC killed pneumococci at 0.2 h; RP 59500 was also the most active compound at 1 and 2 h. By comparison, penicillin and sparfloxacin at one, two, and four times the MICs reduced the original inoculum by > or = 1 log at 2 h for 46, 80, and 95% and for 50, 72, and 86% of strains, respectively. The killing activity of RP 59500 was the same against erythromycin-susceptible and -resistant strains. RP 57669, RP 54479, and erythromycin were either inactive or bacteriostatic at 2 h. Of all drugs tested, RP 59500 yielded the most rapid killing.


1997 ◽  
Vol 41 (1) ◽  
pp. 148-155 ◽  
Author(s):  
S K Spangler ◽  
M R Jacobs ◽  
P C Appelbaum

Agar dilution MIC methodology was used to test the activities of GV 118819X (sanfetrinem), ampicillin, amoxicillin, amoxicillin-clavulanate, cefpodoxime, loracarbef, levofloxacin, clarithromycin, ceftriaxone, imipenem, and vancomycin against 53 penicillin-susceptible, 84 penicillin-intermediate and 74 penicillin-resistant pneumococci isolated in the United States. GV 118819X was the most active oral beta-lactam, with MIC at which 50% of the isolates were inhibited (MIC50)/MIC90 values of 0.008/0.03, 0.06/0.5, and 0.5/1.0 micrograms/ml against penicillin-susceptible, -intermediate, and -resistant stains, respectively. Amoxicillin and amoxicillin in the presence of clavulanate (2:1) were the second most-active oral beta-lactams, followed by ampicillin and cefpodoxime; loracarbef was not active against penicillin-intermediate and -resistant strains. Clarithromycin was most active against penicillin-susceptible strains but was less active against intermediate and resistant stains. All pneumococcal stains were inhibited by ceftriaxone and imipenem at MICs of < or = 4.0 and < or = 1.0 micrograms/ml, respectively. The activities of levofloxacin and vancomycin were unaffected by penicillin susceptibility. Time-kill studies of three penicillin-susceptible, three penicillin-intermediate, and three penicillin-resistant pneumococci showed that all compounds, at the broth microdilution MIC, yielded 99.9% killing of all strains after 24 h. Kinetic patterns of all oral beta-lactams, ceftriaxone, and vancomycin were similar relative to the MIC, with 90% killing of all strains first observed after 12 h. However, killing by amoxicillin-clavulanate, imipenem, and levofloxacin was slightly faster and that by clarithromycin was slower than that by the above-described drugs. At 2 x the MIC, more strains were killed earlier than was the case at the MIC, but the pattern seen at the MIC prevailed. When MICs and kill kinetics were combined, sanfetrinem was the most active oral antipneumococcal agent in this study.


1997 ◽  
Vol 41 (9) ◽  
pp. 1867-1870 ◽  
Author(s):  
M A Visalli ◽  
M R Jacobs ◽  
P C Appelbaum

Agar dilution with incubation in air and CO2 was used to determine the MICs of erythromycin, dirithromycin, azithromycin, clarithromycin, roxithromycin, and clindamycin for 79 penicillin-susceptible, 72 penicillin-intermediate, and 74 penicillin-resistant pneumococci (158 erythromycin-susceptible and 67 erythromycin-resistant pneumococci). MICs obtained in air were usually 1 to 3 dilutions lower than those obtained in CO2. In air, the respective MICs at which 50% (MIC50s) and 90% (MIC90s) of penicillin-susceptible, -intermediate, and -resistant strains are inhibited were as follows: erythromycin, 0.016 and 0.5, 0.03 and > 64, and 2 and > 64 microg/ml; dirithromycin, 0.03 and 0.5, 0.06 and > 64, and 8 and > 64 microg/ml; azithromycin, 0.03 and 0.5, 0.06 and > 64, and 2 and > 64 microg/ml; clarithromycin, 0.016 and 0.06, 0.03 and > 64, and 2 and > 64 microg/ml; roxithromycin, 0.06 and 2, 0.06 and > 64, and 2 and > 64 microg/ml; and clindamycin, 0.03 and 0.06, 0.06 and > 64, and 0.06 and > 64 microg/ml. The MICs of erythromycin, azithromycin, and dirithromycin were very similar; however, clarithromycin MICs were generally 1 to 2 dilutions lower and roxithromycin MICs were 1 to 2 dilutions higher than those of the other compounds tested. Strains resistant to one macrolide were resistant to all macrolides; however, not all macrolide-resistant strains were resistant to clindamycin, and 32 macrolide-resistant (MICs, > or = 28 microg/ml), clindamycin-susceptible (MICs, < or = 0.25 microg/ml) strains were encountered. Time-kill testing of six strains showed similar killing kinetics for all compounds, with 99.9% killing of all strains observed with the compounds only at or above the MIC after 24 h.


2006 ◽  
Vol 50 (7) ◽  
pp. 2323-2329 ◽  
Author(s):  
Tatiana Bogdanovich ◽  
Kathy A. Smith ◽  
Catherine Clark ◽  
Glenn A. Pankuch ◽  
Gengrong Lin ◽  
...  

ABSTRACT When tested against 254 Haemophilus influenzae strains, LBM415, a peptide deformylase inhibitor, gave MIC50 and MIC90 values of 2.0 μg/ml and 8.0 μg/ml, respectively. The MICs were independent of β-lactam or quinolone susceptibility and the presence or absence of macrolide efflux or ribosomal protein mutations. The MICs of LBM415 against 23 H. parainfluenzae strains were similar to those against H. influenzae. In contrast, erythromycin, azithromycin, and clarithromycin gave unimodal MIC distributions, and apart from β-lactamase-negative, ampicillin-resistant strains, all strains were susceptible to the β-lactams tested. Apart from selected quinolone-resistant strains, all strains were susceptible to ciprofloxacin, levofloxacin, gatifloxacin, moxifloxacin, and gemifloxacin. Resistance to trimethoprim-sulfamethoxazole was common. The potencies of all drugs against 23 H. parainfluenzae strains were similar to those against H. influenzae. Time-kill studies with 10 Haemophilus strains showed LBM415 to be bactericidal at 2× the MIC against 8 of 10 strains after 24 h. For comparison, the macrolides and β-lactams were bactericidal against 8 to 10 strains each at 2× the MIC after 24 h. Quinolones were bactericidal against all 10 strains tested at 2× the MIC after 24 h. Against six H. influenzae strains, postantibiotic effects for LBM415 lasted between 0.8 and 2.2 h. In multistep resistance selection studies, LBM415 produced resistant clones in 7 of the 10 strains tested, with MICs ranging from 4 to 64 μg/ml. No mutations in deformylase (def) and formyltransferase (fmt) genes were detected in any of the LBM415-resistant mutants.


2009 ◽  
Vol 54 (1) ◽  
pp. 230-238 ◽  
Author(s):  
Pamela McGhee ◽  
Catherine Clark ◽  
Klaudia M. Kosowska-Shick ◽  
Kensuke Nagai ◽  
Bonifacio Dewasse ◽  
...  

ABSTRACT CEM-101 had MIC ranges of 0.002 to 0.016 μg/ml against macrolide-susceptible pneumococci and 0.004 to 1 μg/ml against macrolide-resistant phenotypes. Only 3 strains with erm(B), with or without mef(A), had CEM-101 MICs of 1 μg/ml, and 218/221 strains had CEM-101 MICs of ≤0.5 μg/ml. CEM-101 MICs were as much as 4-fold lower than telithromycin MICs against all strains. For Streptococcus pyogenes, CEM-101 MICs ranged from 0.008 to 0.03 μg/ml against macrolide-susceptible strains and from 0.015 to 1 μg/ml against macrolide-resistant strains. Against erm(B) strains, erythromycin, azithromycin, and clarithromycin MICs were 32 to >64 μg/ml, while 17/19 strains had telithromycin MICs of 4 to 16 μg/ml; CEM-101 MICs were 0.015 to 1 μg/ml. By comparison, erm(A) and mef(A) strains had CEM-101 MICs of 0.015 to 0.5 μg/ml, clindamycin and telithromycin MICs of ≤1 μg/ml, and erythromycin, azithromycin, and clarithromycin MICs of 0.5 to >64 μg/ml. Pneumococcal multistep resistance studies showed that although CEM-101 yielded clones with higher MICs for all eight strains tested, seven of eight strains had clones with CEM-101 MICs that rose from 0.004 to 0.03 μg/ml (parental strains) to 0.06 to 0.5 μg/ml (resistant clones); for only one erm(B) mef(A) strain with a parental MIC of 1 μg/ml was there a resistant clone with a MIC of 32 μg/ml, with no detectable mutations in the L4, L22, or 23S rRNA sequence. Among two of five S. pyogenes strains tested, CEM-101 MICs rose from 0.03 to 0.25 μg/ml, and only for the one strain with erm(B) did CEM-101 MICs rise from 1 to 8 μg/ml, with no changes occurring in any macrolide resistance determinant. CEM-101 had low MICs as well as low potential for the selection of resistant mutants, independent of bacterial species or resistance phenotypes in pneumococci and S. pyogenes.


2000 ◽  
Vol 44 (10) ◽  
pp. 2747-2751 ◽  
Author(s):  
Ellie J. C. Goldstein ◽  
Diane M. Citron ◽  
C. Vreni Merriam ◽  
Yumi Warren ◽  
Kerin Tyrrell

ABSTRACT GAR-936 is a new semisynthetic glycylcycline with a broad antibacterial spectrum, including tetracycline-resistant strains. The in vitro activities of GAR-936, minocycline, doxycycline, tetracycline, moxifloxacin, penicillin G, and erythromycin were determined by agar dilution methods against 268 aerobic and 148 anaerobic strains of bacteria (including Pasteurella, Eikenella,Moraxella, Bergeyella, Neisseria, EF-4, Bacteroides, Prevotella,Porphyromonas, Fusobacterium,Staphylococcus, Streptococcus,Enterococcus, Corynebacterium,Propionibacterium, Peptostreptococcus, andActinomyces) isolated from infected human and animal bite wounds in humans, including strains resistant to commonly used antimicrobials. GAR-936 was very active, with an MIC at which 90% of the strains are inhibited (MIC90) of ≤0.25 μg/ml, against all aerobic gram-positive and -negative strains, including tetracycline-resistant strains of Enterococcus,Streptococcus, and coagulase-negative staphylococci, except for Eikenella corrodens (MIC90, ≤4 μg/ml). GAR-936 was also very active against all anaerobic species, including tetracycline-, doxycycline-, and minocycline-resistant strains ofPrevotella spp., Porphyromonas spp.,Bacteroides tectum, and Peptostreptococcusspp., with an MIC90 of ≤0.25 μg/ml. Erythromycin- and moxifloxacin-resistant fusobacteria were susceptible to GAR-936, with an MIC90 of 0.06 μg/ml.


2009 ◽  
Vol 75 (22) ◽  
pp. 6973-6980 ◽  
Author(s):  
Girum Tadesse Tessema ◽  
Trond M�retr� ◽  
Achim Kohler ◽  
Lars Axelsson ◽  
Kristine Naterstad

ABSTRACT Sakacin P is a class IIa bacteriocin that is active against the food-borne pathogen Listeria monocytogenes, and use of this compound as a biopreservative in foods has been suggested. In the present study, we characterized 30 spontaneous sakacin P-resistant mutants of L. monocytogenes obtained after single exposure to sakacin P. The frequency of development of sakacin P resistance for all strains was in the range from 10−8 to 10−9. Using the 50% inhibitory concentration (IC50) of sakacin P, the strains could be grouped into strains with high levels of resistance (IC50, ≥104 ng ml−1) and strains with low levels of resistance (IC50, <104 ng ml−1). Resistant strains belonging to the same IC50 group also had similar physiological and genetic characteristics. Generally, the resistant strains showed substantial variations in many parameters, such as differences in the stability of the acquired resistance to sakacin P, growth fitness, food-related stress tolerance, and biofilm-forming ability. Fourier transform infrared spectroscopy revealed differences between wild-type and resistant strains in polysaccharide, fatty acid, and, protein regions. A mannose-specific phosphotransferase (PTS) operon has been described for class IIa bacteriocin resistance, and the sakacin P-resistant strains displayed both up- and downregulation of the expression of the mptA gene encoding the PTS system. This is the first comprehensive study of the diversity of a large number of spontaneous resistant mutants obtained after one exposure to a class IIa bacteriocin, particularly to sakacin P. The great diversity among the resistant strains exposed to the same stress conditions suggests that there are different resistance mechanisms.


2000 ◽  
Vol 44 (2) ◽  
pp. 304-310 ◽  
Author(s):  
Todd A. Davies ◽  
Linda M. Kelly ◽  
Glenn A. Pankuch ◽  
Kim L. Credito ◽  
Michael R. Jacobs ◽  
...  

ABSTRACT The activities of gemifloxacin compared to those of nine other agents was tested against a range of penicillin-susceptible and -resistant pneumococci by agar dilution, microdilution, time-kill, and post-antibiotic effect (PAE) methods. Against 64 penicillin-susceptible, 68 penicillin-intermediate, and 75 penicillin-resistant pneumococci (all quinolone susceptible), agar dilution MIC50s (MICs at which 50% of isolates are inhibited)/MIC90s (in micrograms per milliliter) were as follows: gemifloxacin, 0.03/0.06; ciprofloxacin, 1.0/4.0; levofloxacin, 1.0/2.0; sparfloxacin, 0.5/1.0; grepafloxacin, 0.125/0.5; trovafloxacin, 0.125/0.25; amoxicillin, 0.016/0.06 (penicillin-susceptible isolates), 0.125/1.0 (penicillin-intermediate isolates), and 2.0/4.0 (penicillin-resistant isolates); cefuroxime, 0.03/0.25 (penicillin-susceptible isolates), 0.5/2.0 (penicillin-intermediate isolates), and 8.0/16.0 (penicillin-resistant isolates); azithromycin, 0.125/0.5 (penicillin-susceptible isolates), 0.125/>128.0 (penicillin-intermediate isolates), and 4.0/>128.0 (penicillin-resistant isolates); and clarithromycin, 0.03/0.06 (penicillin-susceptible isolates), 0.03/32.0 (penicillin-intermediate isolates), and 2.0/>128.0 (penicillin-resistant isolates). Against 28 strains with ciprofloxacin MICs of ≥8 μg/ml, gemifloxacin had the lowest MICs (0.03 to 1.0 μg/ml; MIC90, 0.5 μg/ml), compared with MICs ranging between 0.25 and >32.0 μg/ml (MIC90s of 4.0 to >32.0 μg/ml) for other quinolones. Resistance in these 28 strains was associated with mutations in parC, gyrA,parE, and/or gyrB or efflux, with some strains having multiple resistance mechanisms. For 12 penicillin-susceptible and -resistant pneumococcal strains (2 quinolone resistant), time-kill results showed that levofloxacin at the MIC, gemifloxacin and sparfloxacin at two times the MIC, and ciprofloxacin, grepafloxacin, and trovafloxacin at four times the MIC were bactericidal for all strains after 24 h. Gemifloxacin was uniformly bactericidal after 24 h at ≤0.5 μg/ml. Various degrees of 90 and 99% killing by all quinolones were detected after 3 h. Gemifloxacin and trovafloxacin were both bactericidal at two times the MIC for the two quinolone-resistant pneumococci. Amoxicillin at two times the MIC and cefuroxime at four times the MIC were uniformly bactericidal after 24 h, with some degree of killing at earlier time points. Macrolides gave slower killing against the seven susceptible strains tested, with 99.9% killing of all strains at two to four times the MIC after 24 h. PAEs for five quinolone-susceptible strains were similar (0.3 to 3.0 h) for all quinolones, and significant quinolone PAEs were found for the quinolone-resistant strain.


1998 ◽  
Vol 42 (3) ◽  
pp. 624-630 ◽  
Author(s):  
G. A. Pankuch ◽  
M. A. Visalli ◽  
M. R. Jacobs ◽  
P. C. Appelbaum

ABSTRACT Susceptibility of 230 penicillin- and erythromycin-susceptible and -resistant pneumococci to HMR 3647 (RU 66647), a new ketolide, was tested by agar dilution, and results were compared with those of erythromycin, azithromycin, clarithromycin, roxithromycin, rokitamycin, clindamycin, pristinamycin, ciprofloxacin, sparfloxacin, trimethoprim-sulfamethoxazole, doxycycline, chloramphenicol, cefuroxime, ceftriaxone, imipenem, and vancomycin. HMR 3647 was very active against all strains tested, with MICs at which 90% of the strains were inhibited (MIC90s) of 0.03 μg/ml for erythromycin-susceptible strains (MICs, ≤0.25 μg/ml) and 0.25 μg/ml for erythromycin-resistant strains (MICs, ≥1.0 μg/ml). All other macrolides yielded MIC90s of 0.03 to 0.25 and >64.0 μg/ml for erythromycin-susceptible and -resistant strains, respectively. The MICs of clindamycin for 51 of 100 (51%) erythromycin-resistant strains were ≤0.125 μg/ml. The MICs of pristinamycin for all strains were ≤1.0 μg/ml. The MIC90s of ciprofloxacin and sparfloxacin were 4.0 and 0.5 μg/ml, respectively, and were unaffected by penicillin or erythromycin susceptibility. Vancomycin and imipenem inhibited all strains at ≤1.0 μg/ml. The MICs of cefuroxime and cefotaxime rose with those of penicillin G. The MICs of trimethoprim-sulfamethoxazole, doxycycline, and chloramphenicol were variable but were generally higher in penicillin- and erythromycin-resistant strains. HMR 3647 had the best kill kinetics of all macrolides tested against 11 erythromycin-susceptible and -resistant strains, with uniform bactericidal activity (99.9% killing) after 24 h at two times the MIC and 99% killing of all strains at two times the MIC after 12 h for all strains. Pristinamycin showed more rapid killing at 2 to 6 h, with 99.9% killing of 10 of 11 strains after 24 h at two times the MIC. Other macrolides showed significant activity, relative to the MIC, against erythromycin-susceptible strains only.


Sign in / Sign up

Export Citation Format

Share Document