scholarly journals Two-Year Assessment of Entecavir Resistance in Lamivudine-Refractory Hepatitis B Virus Patients Reveals Different Clinical Outcomes Depending on the Resistance Substitutions Present

2006 ◽  
Vol 51 (3) ◽  
pp. 902-911 ◽  
Author(s):  
Daniel J. Tenney ◽  
Ronald E. Rose ◽  
Carl J. Baldick ◽  
Steven M. Levine ◽  
Kevin A. Pokornowski ◽  
...  

ABSTRACT Entecavir (ETV) is a deoxyguanosine analog approved for use for the treatment of chronic infection with wild-type and lamivudine-resistant (LVDr) hepatitis B virus (HBV). In LVD-refractory patients, 1.0 mg ETV suppressed HBV DNA levels to below the level of detection by PCR (<300 copies/ml) in 21% and 34% of patients by Weeks 48 and 96, respectively. Prior studies showed that virologic rebound due to ETV resistance (ETVr) required preexisting LVDr HBV reverse transcriptase substitutions M204V and L180M plus additional changes at T184, S202, or M250. To monitor for resistance, available isolates from 192 ETV-treated patients were sequenced, with phenotyping performed for all isolates with all emerging substitutions, in addition to isolates from all patients experiencing virologic rebounds. The T184, S202, or M250 substitution was found in LVDr HBV at baseline in 6% of patients and emerged in isolates from another 11/187 (6%) and 12/151 (8%) ETV-treated patients by Weeks 48 and 96, respectively. However, use of a more sensitive PCR assay detected many of the emerging changes at baseline, suggesting that they originated during LVD therapy. Only a subset of the changes in ETVr isolates altered their susceptibilities, and virtually all isolates were significantly replication impaired in vitro. Consequently, only 2/187 (1%) patients experienced ETVr rebounds in year 1, with an additional 14/151 (9%) patients experiencing ETVr rebounds in year 2. Isolates from all 16 patients with rebounds were LVDr and harbored the T184 and/or S202 change. Seventeen other novel substitutions emerged during ETV therapy, but none reduced the susceptibility to ETV or resulted in a rebound. In summary, ETV was effective in LVD-refractory patients, with resistant sequences arising from a subset of patients harboring preexisting LVDr/ETVr variants and with approximately half of the patients experiencing a virologic rebound.

2007 ◽  
Vol 81 (8) ◽  
pp. 3992-4001 ◽  
Author(s):  
David R. Langley ◽  
Ann W. Walsh ◽  
Carl J. Baldick ◽  
Betsy J. Eggers ◽  
Ronald E. Rose ◽  
...  

ABSTRACT Entecavir (ETV; Baraclude) is a novel deoxyguanosine analog with activity against hepatitis B virus (HBV). ETV differs from the other nucleoside/tide reverse transcriptase inhibitors approved for HBV therapy, lamivudine (LVD) and adefovir (ADV), in several ways: ETV is >100-fold more potent against HBV in culture and, at concentrations below 1 μM, displays no significant activity against human immunodeficiency virus (HIV). Additionally, while LVD and ADV are obligate DNA chain terminators, ETV halts HBV DNA elongation after incorporating a few additional bases. Three-dimensional homology models of the catalytic center of the HBV reverse transcriptase (RT)-DNA-deoxynucleoside triphosphate (dNTP) complex, based on the HIV RT-DNA structure, were used with in vitro enzyme kinetic studies to examine the mechanism of action of ETV against HBV RT. A novel hydrophobic pocket in the rear of the RT dNTP binding site that accommodates the exocyclic alkene moiety of ETV was predicted, establishing a basis for the superior potency observed experimentally. HBV DNA chain termination by ETV was accomplished through disfavored energy requirements as well as steric constraints during subsequent nucleotide addition. Validation of the model was accomplished through modeling of LVD resistance substitutions, which caused an eightfold decrease in ETV susceptibility and were predicted to reduce, but not eliminate, the ETV-binding pocket, in agreement with experimental observations. ADV resistance changes did not affect the ETV docking model, also agreeing with experimental results. Overall, these studies explain the potency, mechanism, and cross-resistance profile of ETV against HBV and account for the successful treatment of naive and LVD- or ADV-experienced chronic HBV patients.


2018 ◽  
Vol 92 (11) ◽  
pp. e02007-17 ◽  
Author(s):  
Thomas Tu ◽  
Magdalena A. Budzinska ◽  
Florian W. R. Vondran ◽  
Nicholas A. Shackel ◽  
Stephan Urban

ABSTRACTChronic infection by hepatitis B virus (HBV) is the major contributor to liver disease worldwide. Though HBV replicates via a nuclear episomal DNA (covalently closed circular DNA [cccDNA]), integration of HBV DNA into the host cell genome is regularly observed in the liver in infected patients. While reported as a prooncogenic alteration, the mechanism(s) and timing of HBV DNA integration are not well understood, chiefly due to the lack ofin vitroinfection models that have detectable integration events. In this study, we have established anin vitrosystem in which integration can be reliably detected following HBV infection. We measured HBV DNA integration using inverse nested PCR in primary human hepatocytes, HepaRG-NTCP, HepG2-NTCP, and Huh7-NTCP cells after HBV infection. Integration was detected in all cell types at a rate of >1 per 10,000 cells, with the most consistent detection in Huh7-NTCP cells. The integration rate remained stable between 3 and 9 days postinfection. HBV DNA integration was efficiently blocked by treatment with a 200 nM concentration of the HBV entry inhibitor Myrcludex B, but not with 10 μM tenofovir, 100 U of interferon alpha, or a 1 μM concentration of the capsid assembly inhibitor GLS4. This suggests that integration of HBV DNA occurs immediately after infection of hepatocytes and is likely independent ofde novoHBV genome replication in this model. Site analysis revealed that HBV DNA integrations were distributed over the entire human genome. Further, integrated HBV DNA sequences were consistent with double-stranded linear HBV DNA being the major precursor. Thus, we have established anin vitrosystem to interrogate the mechanisms of HBV DNA integration.IMPORTANCEHepatitis B virus (HBV) is a common blood-borne pathogen and, following a chronic infection, can cause liver cancer and liver cirrhosis. Integration of HBV DNA into the host genome occurs in all known members of theHepadnaviridaefamily, despite this form not being necessary for viral replication. HBV DNA integration has been reported to drive liver cancer formation and persistence of virus infection. However, when and the mechanism(s) by which HBV DNA integration occurs are not clear. In this study, we have developed and characterized anin vitrosystem to reliably detect HBV DNA integrations that result from a true HBV infection event and that closely resemble those found in patient tissues. Using this model, we showed that integration occurs when the infection is first established. Importantly, we provide here a system to analyze molecular factors involved in HBV integration, which can be used to develop strategies to halt its formation.


2007 ◽  
Vol 88 (10) ◽  
pp. 2686-2695 ◽  
Author(s):  
Daniel Candotti ◽  
Kwabena Danso ◽  
Jean-Pierre Allain

To determine whether maternofetal transmission of hepatitis B virus (HBV) is a common route of infection leading to chronic infection in west Africa, plasma samples, obtained at delivery from 1368 pregnant Ghanaian women and paired umbilical cord blood or newborn whole blood samples, were tested for HBV surface antigen (HBsAg) and DNA. A 16 % prevalence of HBV chronic carriers, defined as detectable HBsAg and/or HBV DNA, was found, >80 % contained less than 1×104 IU ml−1 HBV DNA and 99 % were infected with genotype E strains. HBV maternofetal transmission was documented in 17 out of 204 (8.3 %) paired HBV carrier women–cord blood/newborn samples. The rate of transmission was 55 % and 3.3 % when maternal viral load was above or below 1×104 IU ml−1, respectively (P=0.0008). Maternofetal transmission of HBV genotype E was estimated to account for 8 % of the cases of chronic HBsAg carriers. Six women with low viral load at delivery (five <20 IU ml−1) and anti-HBe (hepatitis B e antigen) transmitted HBV. Surprisingly, while non-transmitted low viral load strains had 79 % mutations at position 1896 of HBV genome, transmitted strains were all wild-type despite anti-HBe presence (P=0.0041), suggesting the possible role of HBeAg as risk factor for HBV maternofetal transmission. The relative risk of maternofetal transmission was 2.4 when pregnant women carried high viral load and 11.5 when carrying wild-type strains at position 1896, irrespective of viral load. We conclude that viral load and pre-core wild-type at position 1896 are two independent risk factors for HBV genotype E maternofetal transmission, which remains a minor contributor to high prevalence of chronic infection.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Xiuzhu Gao ◽  
Xiumei Chi ◽  
Xiaomei Wang ◽  
Ruihong Wu ◽  
Hongqin Xu ◽  
...  

Interleukin-33 has been demonstrated to be associated with liver damage. However, its potential value in hepatitis B virus (HBV) infection remains unknown. This study was designed to investigate the role of IL-33 in hydrodynamic HBV mouse model. Different doses of IL-33 were used to treat HBV wild-type, ST2 knockout, CD8+ T depletion, NK depletion C57BL/6 mice and C.B-17 SCID and nod SCID mouse, respectively. The concentrations of HBV DNA, HBsAg, HBeAg, and molecules related to liver function were detected in the collected serum at different time points from model mice. Intrahepatic HBcAg was visualized by immunohistochemical staining of liver tissues. In vitro, hepG2 cells were transfected with pAAV-HBV 1.2, then treated with IL-33. The results showed that IL-33 significantly reduced HBV DNA and HBsAg in a dose-dependent manner in HBV wild-type mice. However, in the IL-33 specific receptor ST2 knockout mice, their antiviral effects could not be exerted. Through immunodeficient animal models and in vivo immune cell depletion mouse model, we found that IL-33 could not play antiviral effects without NK cells. Moreover, IL-33 could reduce the levels of HBsAg and HBeAg in the supernatant of HBV-transfected hepG2 cells in vitro. Our study revealed that IL-33 could inhibit HBV through ST2 receptor in the HBV mouse model, and this effect can be impaired without NK cell. Additionally, IL-33 had the direct anti-HBV effect in vitro, indicating that IL-33 could be a potent inducer of HBV clearance and a promising drug candidate.


2004 ◽  
Vol 48 (6) ◽  
pp. 2199-2205 ◽  
Author(s):  
Radhakrishnan P. Iyer ◽  
Yi Jin ◽  
Arlene Roland ◽  
John D. Morrey ◽  
Samir Mounir ◽  
...  

ABSTRACT Several nucleoside analogs are under clinical development for use against hepatitis B virus (HBV). Lamivudine (3TC), a nucleoside analog, and adefovir dipivoxil (ADV), an acyclonucleotide analog, are clinically approved. However, long-term treatment can induce viral resistance, and following the cessation of therapy, viral rebound is frequently observed. There continues to be a need for new antiviral agents with novel mechanisms of action. A library of more than 600 di- and trinucleotide compounds synthesized by parallel synthesis using a combinatorial strategy was screened for potential inhibitors of HBV replication using the chronically HBV-producing cell line 2.2.15. Through an iterative process of synthesis, lead optimization, and screening, three analogs were identified as potent inhibitors of HBV replication: dinucleotides ORI-7246 (drug concentration at which a 10-fold reduction of HBV DNA was observed [EC90], 1.4 μM) and ORI-9020 (EC90, 1.2 μM) and trinucleotide ORI-7170 (EC90, 7.2 μM). These analogs inhibited the replication of both strands of HBV DNA. No suppression of HBV protein synthesis or intracellular core particle formation by these analogs was observed. No inhibition of HBV DNA strand elongation by the analogs or their 5′-triphosphate versions was apparent in in vitro polymerase assays. Although the exact mechanism of action is not yet identified, present data are consistent with an inhibition of the HBV reverse transcriptase-directed priming step prior to elongation of the first viral DNA strand. In transient-transfection assays, these analogs inhibited the replication of 3TC-resistant HBV. Synergistic interactions in combination treatments between the analogs and either 3TC or ADV were observed. These compounds represent a novel class of anti-HBV molecules and warrant further investigation as potential therapeutic agents.


1987 ◽  
Vol 6 (3) ◽  
pp. 675-680 ◽  
Author(s):  
C.M. Chang ◽  
K.S. Jeng ◽  
C.P. Hu ◽  
S.J. Lo ◽  
T.S. Su ◽  
...  

Author(s):  
Kemal Fariz Kalista ◽  
Maryati Surya ◽  
Silmi Mariya ◽  
Diah Iskandriati ◽  
Irsan Hasan ◽  
...  

Background: Hepatitis B virus (HBV) infection is still one of the biggest health problems in the world, which could lead to chronic hepatitis, cirrhosis and hepatocellular carcinoma. Treatment for HBV infection has not yet achieved a functional cure. More studies are needed to investigate human HBV (HuHBV), but the scarcity of animal models for HuHBV infection became a barrier. Recently, many studies have shown that Tupaia are suitable for the study of HuHBV. The purpose of this study was to develop a primary tupaia hepatocyte (PTH) culture from T. javanica, a species of Tupaia found in Indonesia, and to prove that HuHBV can replicate in the PTH.Method: In vitro experimental study using PTH isolated from five wild adult T. javanica in Primate Research Center, IPB University. HuHBV was taken from humans with HBsAg and HBV-DNA (+). PTH cells then were infected with HuHBV after reaching 80% confluence. Observation on PTH cells was done everyday for 20 days. Qualitative and quantitative HBsAg were measured using a CMIA while HBV-DNA and cccDNA were measured by RT-PCR.Results: A cytopathic effect was seen on day post infection (DPI)-16. HBsAg and HBV-DNA were detected from DPI-2 until DPI-18, with HBV-DNA level peaked on DPI-12. cccDNA concentration was fluctuating from DPI-2 until DPI-20 with highest level on DPI-16.Conclusion: HuHBV could infect and replicate in PTH from T. javanica can be infected with HuHBV and HuHBV can replicate in the PTH from T. javanica.


2019 ◽  
Vol 58 (2) ◽  
Author(s):  
Ni Lin ◽  
Aizhu Ye ◽  
Jinpiao Lin ◽  
Can Liu ◽  
Jinlan Huang ◽  
...  

ABSTRACT Pregenomic RNA (pgRNA) is a direct transcription product of hepatitis B virus (HBV) covalently closed circular DNA (cccDNA), and it plays important roles in viral genome amplification and replication. This study was designed to investigate whether serum pgRNA is a strong alternative marker for reflecting HBV cccDNA levels and to analyze the correlation between serum pgRNA, serum HBV DNA, and hepatitis B surface antigen (HBsAg). A total of 400 HBV-infected patients who received nucleos(t)ide analog (NA) therapy with different clinical outcomes were involved in this research. Case groups included asymptomatic hepatitis B virus carrier (ASC), chronic hepatitis B (CHB), liver cirrhosis (LC), and hepatocellular carcinoma (HCC) patients, with 100 patients in each group. The results showed that the levels of HBV pgRNA had significant differences between these 4 groups. Serum pgRNA levels correlated well with serum HBV DNA and HBsAg levels (HBV pgRNA levels versus HBV DNA levels, r = 0.58, P < 0.001; HBV pgRNA levels versus HBsAg levels, r = 0.47, P < 0.001). In addition, we focused on the 108 HBV-infected patients with HBV DNA levels of <500 IU/ml; it was surprising to find that in 17.57% (13/74) of cases, HBV pgRNA could be detected even when the HBV DNA level was below 20 IU/ml. In conclusion, HBV pgRNA levels in serum can be a surrogate marker for intrahepatic HBV cccDNA compared with serum HBV DNA and HBsAg. The detection of serum HBV pgRNA levels may provide a reference for clinical monitoring of cccDNA levels and the selection of appropriate timing for discontinuing antiviral therapy, especially when HBV DNA levels are below the detection limit.


Sign in / Sign up

Export Citation Format

Share Document