Suppression of hepatitis B virus antigen production and replication by wild-type HBV dependently replicating HBV shRNA vectors in vitro and in vivo

2016 ◽  
Vol 134 ◽  
pp. 117-129 ◽  
Author(s):  
Baosheng Li ◽  
Shuo Sun ◽  
Minran Li ◽  
Xin Cheng ◽  
Haijun Li ◽  
...  
2002 ◽  
Vol 46 (8) ◽  
pp. 2525-2532 ◽  
Author(s):  
S. Levine ◽  
D. Hernandez ◽  
G. Yamanaka ◽  
S. Zhang ◽  
R. Rose ◽  
...  

ABSTRACT Entecavir (ETV) is a potent and selective inhibitor of hepatitis B virus (HBV) replication in vitro and in vivo that is currently in clinical trials for the treatment of chronic HBV infections. A major limitation of the current HBV antiviral therapy, lamivudine (3TC), is the emergence of drug-resistant HBV in a majority of treated patients due to specific mutations in the nucleotide binding site of HBV DNA polymerase (HBV Pol). To determine the effects of 3TC resistance mutations on inhibition by ETV triphosphate (ETV-TP), a series of in vitro studies were performed. The inhibition of wild-type and 3TC-resistant HBV Pol by ETV-TP was measured using recombinant HBV nucleocapsids, and compared to that of 3TC-TP. These enzyme inhibition studies demonstrated that ETV-TP is a highly potent inhibitor of wild-type HBV Pol and is 100- to 300-fold more potent than 3TC-TP against 3TC-resistant HBV Pol. Cell culture assays were used to gauge the potential for antiviral cross-resistance of 3TC-resistant mutants to ETV. Results demonstrated that ETV inhibited the replication of 3TC-resistant HBV, but 20- to 30-fold higher concentrations were required. To gain further perspective regarding the potential therapeutic use of ETV, its phosphorylation was examined in hepatoma cells treated with extracellular concentrations representative of drug levels in plasma in ETV-treated patients. At these concentrations, intracellular ETV-TP accumulated to levels expected to inhibit the enzyme activity of both wild-type and 3TC-resistant HBV Pol. These findings are predictive of potent antiviral activity of ETV against both wild-type and 3TC-resistant HBV.


1998 ◽  
Vol 18 (3) ◽  
pp. 1562-1569 ◽  
Author(s):  
Izhak Haviv ◽  
Meir Shamay ◽  
Gilad Doitsh ◽  
Yosef Shaul

ABSTRACT pX, the hepatitis B virus (HBV)-encoded regulator, coactivates transcription through an unknown mechanism. pX interacts with several components of the transcription machinery, including certain activators, TFIIB, TFIIH, and the RNA polymerase II (POLII) enzyme. We show that pX localizes in the nucleus and coimmunoprecipitates with TFIIB from nuclear extracts. We used TFIIB mutants inactive in binding either POLII or TATA binding protein to study the role of TFIIB-pX interaction in transcription coactivation. pX was able to bind the former type of TFIIB mutant and not the latter. Neither of these sets of TFIIB mutants supports transcription. Remarkably, the latter TFIIB mutants fully block pX activity, suggesting the role of TFIIB in pX-mediated coactivation. By contrast, in the presence of pX, TFIIB mutants with disrupted POLII binding acquire the wild-type phenotype, both in vivo and in vitro. These results suggest that pX may establish the otherwise inefficient TFIIB mutant-POLII interaction, by acting as a molecular bridge. Collectively, our results demonstrate that TFIIB is the in vivo target of pX.


1989 ◽  
Vol 29 (4) ◽  
pp. 244-248 ◽  
Author(s):  
Hideaki Haritani ◽  
Toshikazu Uchida ◽  
Yasunori Okuda ◽  
Toshio Shikata

2014 ◽  
Vol 157 ◽  
pp. 62-68 ◽  
Author(s):  
Sheng Liu ◽  
Wanxing Wei ◽  
Yubin Li ◽  
Xing Lin ◽  
Kaichuang Shi ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3475 ◽  
Author(s):  
Si-Xin Huang ◽  
Jun-Fei Mou ◽  
Qin Luo ◽  
Qing-Hu Mo ◽  
Xian-Li Zhou ◽  
...  

Coumarins are widely present in a variety of plants and have a variety of pharmacological activities. In this study, we isolated a coumarin compound from Microsorium fortunei (Moore) Ching; the compound was identified as esculetin by hydrogen and carbon spectroscopy. Its anti-hepatitis B virus (HBV) activity was investigated in vitro and in vivo. In the human hepatocellular liver carcinoma 2.2.15 cell line (HepG2.2.15) transfected with HBV, esculetin effecting inhibited the expression of the HBV antigens and HBV DNA in vitro. Esculetin inhibited the expression of Hepatitis B virus X (HBx) protein in a dose-dependent manner. In the ducklings infected with duck hepatitis B virus (DHBV), the levels of DHBV DNA, duck hepatitis B surface antigen (DHBsAg), duck hepatitis B e-antigen (DHBeAg), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) decreased significantly after esculetin treatment. Summing up the above, the results suggest that esculetin efficiently inhibits HBV replication both in vitro and in vivo, which provides an opportunity for further development of esculetin as antiviral drug.


2001 ◽  
Vol 34 (1) ◽  
pp. 114-122 ◽  
Author(s):  
Béatrice Seignères ◽  
Stéphanie Aguesse-Germon ◽  
Christian Pichoud ◽  
Isabelle Vuillermoz ◽  
Catherine Jamard ◽  
...  

2020 ◽  
Vol 110 ◽  
pp. 254-265
Author(s):  
Leonardo Rojas-Sánchez ◽  
Ejuan Zhang ◽  
Viktoriya Sokolova ◽  
Maohua Zhong ◽  
Hu Yan ◽  
...  

2014 ◽  
Vol 155 (2) ◽  
pp. 1061-1067 ◽  
Author(s):  
Sheng Liu ◽  
Wanxing Wei ◽  
Kaichuang Shi ◽  
Xun Cao ◽  
Min Zhou ◽  
...  

1996 ◽  
Vol 40 (5) ◽  
pp. 1180-1185 ◽  
Author(s):  
G Civitico ◽  
T Shaw ◽  
S Locarnini

Safe and effective treatments for chronic hepatitis B virus (HBV) infection have yet to be developed. Both ganciclovir (9-[1,3-dihydroxy-2-propoxymethyl]guanine) and foscarnet (trisodium phosphonoformate hexahydrate) are potent inhibitors of hepadnavirus replication when used individually in vitro and in vivo. However, the clinical usefulness of each drug is reduced by dose-limiting toxicity, especially during long-term monotherapy. Here we demonstrate additive inhibition of duck HBV DNA replication in cultures of primary duck hepatocytes congenitally infected with duck HBV by combinations of ganciclovir and foscarnet at low, clinically achievable concentrations. These results suggest that the effects of ganciclovir and foscarnet against HBV may be additive in vivo.


Sign in / Sign up

Export Citation Format

Share Document