scholarly journals Preclinical Characterization of NVR 3-778, a First-in-Class Capsid Assembly Modulator against Hepatitis B Virus

2018 ◽  
Vol 63 (1) ◽  
Author(s):  
Angela M. Lam ◽  
Christine Espiritu ◽  
Robert Vogel ◽  
Suping Ren ◽  
Vincent Lau ◽  
...  

ABSTRACT NVR 3-778 is the first capsid assembly modulator (CAM) that has demonstrated antiviral activity in hepatitis B virus (HBV)-infected patients. NVR 3-778 inhibited the generation of infectious HBV DNA-containing virus particles with a mean antiviral 50% effective concentration (EC50) of 0.40 µM in HepG2.2.15 cells. The antiviral profile of NVR 3-778 indicates pan-genotypic antiviral activity and a lack of cross-resistance with nucleos(t)ide inhibitors of HBV replication. The combination of NVR 3-778 with nucleos(t)ide analogs in vitro resulted in additive or synergistic antiviral activity. Mutations within the hydrophobic pocket at the dimer-dimer interface of the core protein could confer resistance to NVR 3-778, which is consistent with the ability of the compound to bind to core and to induce capsid assembly. By targeting core, NVR 3-778 inhibits pregenomic RNA encapsidation, viral replication, and the production of HBV DNA- and HBV RNA-containing particles. NVR 3-778 also inhibited de novo infection and viral replication in primary human hepatocytes with EC50 values of 0.81 µM against HBV DNA and between 3.7 and 4.8 µM against the production of HBV antigens and intracellular HBV RNA. NVR 3-778 showed favorable pharmacokinetics and safety in animal species, allowing serum levels in excess of 100 µM to be achieved in mice and, thus, enabling efficacy studies in vivo. The overall preclinical profile of NVR 3-778 predicts antiviral activity in vivo and supports its further evaluation for safety, pharmacokinetics, and antiviral activity in HBV-infected patients.

2009 ◽  
Vol 53 (7) ◽  
pp. 2865-2870 ◽  
Author(s):  
John D. Morrey ◽  
Brent E. Korba ◽  
James R. Beadle ◽  
David L. Wyles ◽  
Karl Y. Hostetler

ABSTRACT Alkoxyalkyl esters of acyclic nucleoside phosphonates have previously been shown to have increased antiviral activity when they are administered orally in animal models of viral diseases, including lethal infections with vaccinia virus, cowpox virus, ectromelia virus, murine cytomegalovirus, and adenovirus. 9-(S)-(3-Hydroxy-2-phosphonomethoxypropyl)adenine [(S)-HPMPA] was previously shown to have activity against hepatitis B virus (HBV) in vitro. To assess the effect of alkoxyalkyl esterification of (S)-HPMPA, we prepared the hexadecyloxypropyl (HDP), 15-methyl-hexadecyloxypropyl (15M-HDP), and octadecyloxyethyl (ODE) esters and compared their activities with the activity of adefovir dipivoxil in vitro and in vivo. Alkoxyalkyl esters of (S)-HPMPA were 6 to 20 times more active than unmodified (S)-HPMPA on the basis of their 50% effective concentrations in 2.2.15 cells. The increased antiviral activity appeared to be due in part to the increased uptake and conversion of HDP-(S)-HPMPA to HPMPA diphosphate observed in HepG2 cells in vitro. HDP-(S)-HPMPA retained full activity against HBV mutants resistant to lamivudine (L180M, M204V), but cross-resistance to a mutant resistant to adefovir (N236T) was detected. HDP-(S)-HPMPA is orally bioavailable and provides excellent liver exposure to the drug. Oral treatment of HBV transgenic mice with HDP-(S)-HPMPA, 15M-HDP-(S)-HPMPA, and ODE-(S)-HPMPA for 14 days reduced liver HBV DNA levels by roughly 1.5 log units, a response equivalent to that of adefovir dipivoxil.


2016 ◽  
Vol 10 (3) ◽  
pp. 553-559 ◽  
Author(s):  
Akira Sato ◽  
Toshiya Ishii ◽  
Fumiaki Sano ◽  
Takayuki Yamada ◽  
Hideaki Takahashi ◽  
...  

De novo hepatitis B is associated with a high risk of hepatic failure often resulting in fatal fulminant hepatitis even when nucleotide analogues are administered. A 77-year-old female developed de novo hepatitis B after R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone) treatment for diffuse large B-cell lymphoma. Hepatitis B virus (HBV) isolated from the patient was of genotype Bj, with a precore mutation (G1896A) exhibiting an extremely high viral load at the onset of hepatitis. She showed markedly high levels of transaminase with mild jaundice on admission and rapid decrease of prothrombin activity after admission. Although acute liver failure was averted by the administration of entecavir and corticosteroid pulse therapy, liver volume decreased to 860 ml, and marked hypoalbuminemia accompanying massive ascites occurred 2 months after the onset of hepatitis and persisted for 3 months with high levels of HBV DNA and mild abnormal alanine aminotransferase levels. Frequent infusions of albumin solution, nutrition support, and alleviation therapy showed limited effect. However, overall improvement along with HBV DNA reduction was observed after increasing the dose of entecavir and completion of prednisolone that was administered with a minimum dose for adrenal insufficiency. An immediate and sufficient suppression of virus replication with potent antiviral therapy is critical, particularly in patients infected with HBV precore mutation (G1896A) and/or Bj genotype, which may have a high viral replication and direct hepatocellular damage.


2005 ◽  
Vol 79 (19) ◽  
pp. 12242-12252 ◽  
Author(s):  
Marc F. Le Mire ◽  
Darren S. Miller ◽  
Wendy K. Foster ◽  
Christopher J. Burrell ◽  
Allison R. Jilbert

ABSTRACT Residual hepatitis B virus (HBV) DNA can be detected in serum and liver after apparent recovery from transient infection. However, it is not known if this residual HBV DNA represents ongoing viral replication and antigen expression. In the current study, ducks inoculated with duck hepatitis B virus (DHBV) were monitored for residual DHBV DNA following recovery from transient infection until 9 months postinoculation (p.i.). Resolution of DHBV infection occurred in 13 out of 15 ducks by 1-month p.i., defined as clearance of DHBV surface antigen-positive hepatocytes from the liver and development of anti-DHBV surface antibodies. At 9 months p.i., residual DHBV DNA was detected using nested PCR in 10/11 liver, 7/11 spleen, 2/11 kidney, 1/11 heart, and 1/11 adrenal samples. Residual DHBV DNA was not detected in serum or peripheral blood mononuclear cells. Within the liver, levels of residual DHBV DNA were 0.0024 to 0.016 copies per cell, 40 to 80% of which were identified as covalently closed circular viral DNA by quantitative PCR assay. This result, which was confirmed by Southern blot hybridization, is consistent with suppressed viral replication or inactive infection. Samples of liver and spleen cells from recovered animals did not transmit DHBV infection when inoculated into 1- to 2-day-old ducklings, and immunosuppressive treatment of ducks with cyclosporine and dexamethasone for 4 weeks did not alter levels of residual DHBV DNA in the liver. These findings further characterize a second form of hepadnavirus persistence in a suppressed or inactive state, quite distinct from the classical chronic carrier state.


1996 ◽  
Vol 40 (5) ◽  
pp. 1180-1185 ◽  
Author(s):  
G Civitico ◽  
T Shaw ◽  
S Locarnini

Safe and effective treatments for chronic hepatitis B virus (HBV) infection have yet to be developed. Both ganciclovir (9-[1,3-dihydroxy-2-propoxymethyl]guanine) and foscarnet (trisodium phosphonoformate hexahydrate) are potent inhibitors of hepadnavirus replication when used individually in vitro and in vivo. However, the clinical usefulness of each drug is reduced by dose-limiting toxicity, especially during long-term monotherapy. Here we demonstrate additive inhibition of duck HBV DNA replication in cultures of primary duck hepatocytes congenitally infected with duck HBV by combinations of ganciclovir and foscarnet at low, clinically achievable concentrations. These results suggest that the effects of ganciclovir and foscarnet against HBV may be additive in vivo.


2002 ◽  
Vol 46 (8) ◽  
pp. 2525-2532 ◽  
Author(s):  
S. Levine ◽  
D. Hernandez ◽  
G. Yamanaka ◽  
S. Zhang ◽  
R. Rose ◽  
...  

ABSTRACT Entecavir (ETV) is a potent and selective inhibitor of hepatitis B virus (HBV) replication in vitro and in vivo that is currently in clinical trials for the treatment of chronic HBV infections. A major limitation of the current HBV antiviral therapy, lamivudine (3TC), is the emergence of drug-resistant HBV in a majority of treated patients due to specific mutations in the nucleotide binding site of HBV DNA polymerase (HBV Pol). To determine the effects of 3TC resistance mutations on inhibition by ETV triphosphate (ETV-TP), a series of in vitro studies were performed. The inhibition of wild-type and 3TC-resistant HBV Pol by ETV-TP was measured using recombinant HBV nucleocapsids, and compared to that of 3TC-TP. These enzyme inhibition studies demonstrated that ETV-TP is a highly potent inhibitor of wild-type HBV Pol and is 100- to 300-fold more potent than 3TC-TP against 3TC-resistant HBV Pol. Cell culture assays were used to gauge the potential for antiviral cross-resistance of 3TC-resistant mutants to ETV. Results demonstrated that ETV inhibited the replication of 3TC-resistant HBV, but 20- to 30-fold higher concentrations were required. To gain further perspective regarding the potential therapeutic use of ETV, its phosphorylation was examined in hepatoma cells treated with extracellular concentrations representative of drug levels in plasma in ETV-treated patients. At these concentrations, intracellular ETV-TP accumulated to levels expected to inhibit the enzyme activity of both wild-type and 3TC-resistant HBV Pol. These findings are predictive of potent antiviral activity of ETV against both wild-type and 3TC-resistant HBV.


2019 ◽  
Vol 9 (2) ◽  
pp. 279-287
Author(s):  
A. P. Kostyusheva ◽  
S. A. Brezgin ◽  
D. N. Zarifyan ◽  
D. S. Chistyakov ◽  
V. I. Gegechkory ◽  
...  

Chronic hepatitis B is a severe liver disease caused by persistent infection of hepatitis B virus in human hepatocytes. Chronic hepatitis B is one of the most common diseases in the world. According to recent estimations, more than 250 million people are chronically infected and more than 1 million of people die annually due to consequences of chronic hepatitis B: liver cirrhosis and hepatocellular carcinoma. The key factor of hepatitis B virus persistency is a special form of viral genome called circular covalently closed DNA. Current therapeutics suppress viral replication but have no effect on circular covalently closed DNA as it exists in the nuclei of hepatocytes as a minichromosome and is not accessible for therapeutics. Commonly, viral reactivation occurs after cessation of treatment. Therefore, duration of antiviral treatment is supposed to be indefinitely long. One of the most promising approaches to target circular covalently closed DNA is the technology of site-specific nucleases CRISPR/Cas9 from Streptococcus pyogenes. A short guide RNA recruits an SpCas9 protein to the viral genome and induces generation of DNA double strand breaks. However, there are several limitations of CRISPR/Cas9 hampering translation of this technology into the clinic. First, efficacy of CRISPR/Cas9 needs to be improved. Second, CRISPR/Cas9-mediated off-target mutagenesis represents a menacing problem which has to be addressed. To overcome these limitations, several approaches have been devised to improve CRISPR/Cas9 activity (modification of guide RNAs) and reduce off-target mutagenesis (a Cas9 protein with enhanced specificity, eSpCas9). In this study, we compared antiviral activity of a classic SpCas9 with an eSpCas9 system as well as analyzed effects of gRNAs modification on anti-HBV effects. Here, we demonstrated that SpCas9 has the highest antiviral potency, reducing transcription and replication of HBV over 90%. Hepatitis B virus covalently closed circular DNA declined over 90% post CRISPR/Cas9 transfection. Although it was previously shown that modified guide RNAs increase nucleolytic activity of CRISPR/Cas9, our results indicated that this modification impairs antiviral activity of CRISPR/Cas9. To conclude, CRISPR/Cas9 effectively suppress viral replication and transcription per se. Described modifications do not potentiate antiviral activity of CRISPR/Cas9 system and should not be used for development of future therapeutics. The best strategy to improve CRISPR/Cas9 efficacy is to design new highly effective guide RNAs. 


2021 ◽  
Vol 7 (5) ◽  
Author(s):  
Chloe Goldsmith ◽  
Damien Cohen ◽  
Anaëlle Dubois ◽  
Maria Guadalupe Martinez ◽  
Kilian Petitjean ◽  
...  

Hepatitis B virus (HBV) contains a 3.2 kb DNA genome and causes acute and chronic hepatitis. HBV infection is a global health problem, with 350 million chronically infected people at increased risk of developing liver disease and hepatocellular carcinoma (HCC). Methylation of HBV DNA in a CpG context (5mCpG) can alter the expression patterns of viral genes related to infection and cellular transformation. Moreover, it may also provide clues as to why certain infections are cleared or persist with or without progression to cancer. The detection of 5mCpG often requires techniques that damage DNA or introduce bias through a myriad of limitations. Therefore, we developed a method for the detection of 5mCpG on the HBV genome that does not rely on bisulfite conversion or PCR. With Cas9-guided RNPs to specifically target the HBV genome, we enriched in HBV DNA from primary human hepatocytes (PHHs) infected with different HBV genotypes, as well as enriching in HBV from infected patient liver tissue, followed by sequencing with Oxford Nanopore Technologies MinION. Detection of 5mCpG by nanopore sequencing was benchmarked with bisulfite-quantitative methyl-specific qPCR (BS-qMSP). The 5mCpG levels in HBV determined by BS-qMSP and nanopore sequencing were highly correlated. Our nanopore sequencing approach achieved a coverage of ~2000× of HBV depending on infection efficiency, sufficient coverage to perform a de novo assembly and detect small fluctuations in HBV methylation, providing the first de novo assembly of native HBV DNA, as well as the first landscape of 5mCpG from native HBV sequences. Moreover, by capturing entire HBV genomes, we explored the epigenetic heterogeneity of HBV in infected patients and identified four epigenetically distinct clusters based on methylation profiles. This method is a novel approach that enables the enrichment of viral DNA in a mixture of nucleic acid material from different species and will serve as a valuable tool for infectious disease monitoring.


2020 ◽  
Vol 64 (5) ◽  
Author(s):  
Jan Martin Berke ◽  
Pascale Dehertogh ◽  
Karen Vergauwen ◽  
Wendy Mostmans ◽  
Koen Vandyck ◽  
...  

ABSTRACT Capsid assembly is a critical step in the hepatitis B virus (HBV) life cycle, mediated by the core protein. Core is a potential target for new antiviral therapies, the capsid assembly modulators (CAMs). JNJ-56136379 (JNJ-6379) is a novel and potent CAM currently in phase II trials. We evaluated the mechanisms of action (MOAs) and antiviral properties of JNJ-6379 in vitro. Size exclusion chromatography and electron microscopy studies demonstrated that JNJ-6379 induced the formation of morphologically intact viral capsids devoid of genomic material (primary MOA). JNJ-6379 accelerated the rate and extent of HBV capsid assembly in vitro. JNJ-6379 specifically and potently inhibited HBV replication; its median 50% effective concentration (EC50) was 54 nM (HepG2.117 cells). In HBV-infected primary human hepatocytes (PHHs), JNJ-6379, when added with the viral inoculum, dose-dependently reduced extracellular HBV DNA levels (median EC50 of 93 nM) and prevented covalently closed circular DNA (cccDNA) formation, leading to a dose-dependent reduction of intracellular HBV RNA levels (median EC50 of 876 nM) and reduced antigen levels (secondary MOA). Adding JNJ-6379 to PHHs 4 or 5 days postinfection reduced extracellular HBV DNA and did not prevent cccDNA formation. Time-of-addition PHH studies revealed that JNJ-6379 most likely interfered with postentry processes. Collectively, these data demonstrate that JNJ-6379 has dual MOAs in the early and late steps of the HBV life cycle, which is different from the MOA of nucleos(t)ide analogues. JNJ-6379 is in development for chronic hepatitis B treatment and may translate into higher HBV functional cure rates.


2021 ◽  
pp. 135965352110443
Author(s):  
Thomas N Kakuda ◽  
Jeysen Z Yogaratnam ◽  
Christopher Westland ◽  
Edward J Gane ◽  
Christian Schwabe ◽  
...  

Background Pharmacokinetics and safety of JNJ-64530440, a hepatitis B virus capsid assembly modulator producing normal empty capsids (CAM-N), in healthy volunteers were evaluated. Methods This Phase I study (NCT03439488) was a double-blind, randomised, placebo-controlled study. Adults ( n = 10/cohort, five Asian/five non-Asian), randomised 4:1, received single-ascending doses of oral JNJ-64530440 (first- and second-generation formulations) or placebo under fasted (50, 150, 300 and 900 mg) or fed (300, 750, 1,000, 2000 and 4000 mg) conditions. Multiple-ascending doses of 750 or 2000 mg once daily and 750 mg twice daily JNJ-64530440 (second-generation formulation) for 7 days were evaluated. Pharmacokinetic parameters were estimated from plasma concentrations. Safety was assessed throughout. Results Less than dose-proportional increases in maximum plasma concentrations (Cmax) and area under the plasma concentration–time curves (AUCs) were observed across the doses. Mean plasma half-lives ranged from 9.3 to 14.5 h. Cmax and AUC were ∼two fold higher under fed versus fasting conditions and slightly higher in Asians versus Caucasians. JNJ-64530440 doses ≥750 mg achieved plasma levels higher than protein-binding adjusted concentrations demonstrating in vitro antiviral activity. No serious adverse events (AEs), treatment discontinuations or dose-limiting toxicities were seen. AE frequency/severity did not increase with dose. Conclusions Single (up to 4000 mg) and multiple doses (up to 2000 mg for 7 days) of JNJ-64530440 were well tolerated in healthy volunteers. Multiple doses ≥750 mg/day achieved plasma concentrations expected to have antiviral activity that may lower hepatitis B surface antigen. No clinically relevant differences in tolerability or pharmacokinetic parameters were seen between Asians versus Caucasians.


2017 ◽  
Vol 61 (8) ◽  
Author(s):  
Angela M. Lam ◽  
Suping Ren ◽  
Christine Espiritu ◽  
Mollie Kelly ◽  
Vincent Lau ◽  
...  

ABSTRACT The hepatitis B virus (HBV) core protein serves multiple essential functions in the viral life cycle, and antiviral agents that target the core protein are being developed. Capsid assembly modulators (CAMs) are compounds that target core and misdirect capsid assembly, resulting in the suppression of HBV replication and virion production. Besides HBV DNA, circulating HBV RNA has been detected in patient serum and can be associated with the treatment response. Here we studied the effect of HBV CAMs on the production of extracellular HBV RNA using infected HepaRG cells and primary human hepatocytes. Representative compounds from the sulfonamide carboxamide and heteroaryldihydropyrimidine series of CAMs were evaluated and compared to nucleos(t)ide analogs as inhibitors of the viral polymerase. The results showed that CAMs blocked extracellular HBV RNA with efficiencies similar to those with which they blocked pregenomic RNA (pgRNA) encapsidation, HBV DNA replication, and Dane particle production. Nucleos(t)ide analogs inhibited viral replication and virion production but not encapsidation or production of extracellular HBV RNA. Profiling of HBV RNA from both culture supernatants and patient serum showed that extracellular viral RNA consisted of pgRNA and spliced pgRNA variants with an internal deletion(s) but still retained the sequences at both the 5′ and 3′ ends. Similar variants were detected in the supernatants of infected cells with and without nucleos(t)ide analog treatment. Overall, our data demonstrate that HBV CAMs represent direct antiviral agents with a profile differentiated from that of nucleos(t)ide analogs, including the inhibition of extracellular pgRNA and spliced pgRNA.


Sign in / Sign up

Export Citation Format

Share Document