scholarly journals Clinical Candidate VT-1161's Antiparasitic EffectIn Vitro, Activity in a Murine Model of Chagas Disease, and Structural Characterization in Complex with the Target Enzyme CYP51 from Trypanosoma cruzi

2015 ◽  
Vol 60 (2) ◽  
pp. 1058-1066 ◽  
Author(s):  
William J. Hoekstra ◽  
Tatiana Y. Hargrove ◽  
Zdzislaw Wawrzak ◽  
Denise da Gama Jaen Batista ◽  
Cristiane F. da Silva ◽  
...  

ABSTRACTA novel antifungal drug candidate, the 1-tetrazole-based agent VT-1161 [(R)-2-(2,4-difluorophenyl)-1,1-difluoro-3-(1H-tetrazol-1-yl)-1-{5-[4-(2,2,2-trifluoroethoxy)phenyl]pyridin-2-yl}propan-2-ol], which is currently in two phase 2b antifungal clinical trials, was found to be a tight-binding ligand (apparent dissociation constant [Kd], 24 nM) and a potent inhibitor of cytochrome P450 sterol 14α-demethylase (CYP51) from the protozoan pathogenTrypanosoma cruzi. Moreover, VT-1161 revealed a high level of antiparasitic activity against amastigotes of the Tulahuen strain ofT. cruziin cellular experiments (50% effective concentration, 2.5 nM) and was activein vivo, causing >99.8% suppression of peak parasitemia in a mouse model of infection with the naturally drug-resistant Y strain of the parasite. The data strongly support the potential utility of VT-1161 in the treatment of Chagas disease. The structural characterization ofT. cruziCYP51 in complex with VT-1161 provides insights into the molecular basis for the compound's inhibitory potency and paves the way for the further rational development of this novel, tetrazole-based inhibitory chemotype both for antiprotozoan chemotherapy and for antifungal chemotherapy.

2015 ◽  
Vol 59 (10) ◽  
pp. 5999-6006 ◽  
Author(s):  
Eliziária C. Santos ◽  
Rômulo D. Novaes ◽  
Marli C. Cupertino ◽  
Daniel S. S. Bastos ◽  
Raphael C. Klein ◽  
...  

ABSTRACTAlthough suramin (Sur) is suggested as a potential drug candidate in the management of Chagas disease, this issue has not been objectively tested. In this study, we examined the applicability of concomitant treatment with benznidazole (Bz) and suramin in mice infected with a virulent strain ofTrypanosoma cruzi. Eighty 12-week-old male C57BL/6 mice were equally randomized in eight groups: (i) noninfected mice (negative control) and mice infected withT. cruziY strain receiving (ii) no treatment (positive control), (iii) Bz, 100 mg/kg of body weight per day, (iv) Sur, 20 mg/kg/day, and (v to viii) Sur, 20 mg/kg/day, combined with Bz, 100, 50, 25, or 5 mg/kg/day. Bz was administered by gavage, and Sur was administered intraperitoneally. Sur dramatically increased the parasitemia, cardiac content of parasite DNA, inflammation, oxidative tissue damage, and mortality. In response to high parasitic load in cardiac tissue, Sur stimulated the immune system in a manner typical of the acute phase of Chagas disease, increasing tissue levels of gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α) and inducing a preferential IgG2a anti-T. cruziserum pattern. When Sur and Bz were combined, the infection severity was attenuated, showing a dose-dependent Bz response. Sur therapy had a more harmful effect on the host than on the parasite and reduced the efficacy of Bz againstT. cruziinfection. Considering that Sur drastically reinforced the infection evolution, potentiating the inflammatory process and the severity of cardiac lesions, thein vivofindings contradicted thein vitroanti-T. cruzipotential described for this drug.


2011 ◽  
Vol 79 (10) ◽  
pp. 4081-4087 ◽  
Author(s):  
Craig Weinkauf ◽  
Ryan Salvador ◽  
Mercio PereiraPerrin

ABSTRACTTrypanosoma cruzi, the agent of Chagas' disease, infects a variety of mammalian cells in a process that includes multiple cycles of intracellular division and differentiation starting with host receptor recognition by a parasite ligand(s). Earlier work in our laboratory showed that the neurotrophin-3 (NT-3) receptor TrkC is activated byT. cruzisurfacetrans-sialidase, also known as parasite-derived neurotrophic factor (PDNF). However, it has remained unclear whether TrkC is used byT. cruzito enter host cells. Here, we show that a neuronal cell line (PC12-NNR5) relatively resistant toT. cruzibecame highly susceptible to infection when overexpressing human TrkC but not human TrkB. Furthermore,trkCtransfection conferred an ∼3.0-fold intracellular growth advantage. Sialylation-deficient Chinese hamster ovarian (CHO) epithelial cell lines Lec1 and Lec2 also became much more permissive toT. cruziafter transfection with thetrkCgene. Additionally, NT-3 specifically blockedT. cruziinfection of the TrkC-NNR5 transfectants and of naturally permissive TrkC-bearing Schwann cells and astrocytes, as did recombinant PDNF. Two specific inhibitors of Trk autophosphorylation (K252a and AG879) and inhibitors of Trk-induced MAPK/Erk (U0126) and Akt kinase (LY294002) signaling, but not an inhibitor of insulin-like growth factor 1 receptor, abrogated TrkC-mediated cell invasion. Antibody to TrkC blockedT. cruziinfection of the TrkC-NNR5 transfectants and of cells that naturally express TrkC. The TrkC antibody also significantly and specifically reduced cutaneous infection in a mouse model of acute Chagas' disease. TrkC is ubiquitously expressed in the peripheral and central nervous systems, and in nonneural cells infected byT. cruzi, including cardiac and gastrointestinal muscle cells. Thus, TrkC is implicated as a functional PDNF receptor in cell entry, independently of sialic acid recognition, mediating broadT. cruziinfection bothin vitroandin vivo.


2015 ◽  
Vol 59 (8) ◽  
pp. 4669-4679 ◽  
Author(s):  
Nilmar Silvio Moretti ◽  
Leonardo da Silva Augusto ◽  
Tatiana Mordente Clemente ◽  
Raysa Paes Pinto Antunes ◽  
Nobuko Yoshida ◽  
...  

ABSTRACTAcetylation of lysine is a major posttranslational modification of proteins and is catalyzed by lysine acetyltransferases, while lysine deacetylases remove acetyl groups. Among the deacetylases, the sirtuins are NAD+-dependent enzymes, which modulate gene silencing, DNA damage repair, and several metabolic processes. As sirtuin-specific inhibitors have been proposed as drugs for inhibiting the proliferation of tumor cells, in this study, we investigated the role of these inhibitors in the growth and differentiation ofTrypanosoma cruzi, the agent of Chagas disease. We found that the use of salermide during parasite infection prevented growth and initial multiplication after mammalian cell invasion byT. cruziat concentrations that did not affect host cell viability. In addition,in vivoinfection was partially controlled upon administration of salermide. There are two sirtuins inT. cruzi, TcSir2rp1 and TcSir2rp3. By using specific antibodies and cell lines overexpressing the tagged versions of these enzymes, we found that TcSir2rp1 is localized in the cytosol and TcSir2rp3 in the mitochondrion. TcSir2rp1 overexpression acts to impair parasite growth and differentiation, whereas the wild-type version of TcSir2rp3 and not an enzyme mutated in the active site improves both. The effects observed with TcSir2rp3 were fully reverted by adding salermide, which inhibited TcSir2rp3 expressed inEscherichia coliwith a 50% inhibitory concentration (IC50) ± standard error of 1 ± 0.5 μM. We concluded that sirtuin inhibitors targeting TcSir2rp3 could be used in Chagas disease chemotherapy.


2015 ◽  
Vol 59 (8) ◽  
pp. 4653-4661 ◽  
Author(s):  
Amanda Fortes Francisco ◽  
Michael D. Lewis ◽  
Shiromani Jayawardhana ◽  
Martin C. Taylor ◽  
Eric Chatelain ◽  
...  

ABSTRACTThe antifungal drug posaconazole has shown significant activity againstTrypanosoma cruziin vitroand in experimental murine models. Despite this, in a recent clinical trial it displayed limited curative potential. Drug testing is problematic in experimental Chagas disease because of difficulties in demonstrating sterile cure, particularly during the chronic stage of infection when parasite burden is extremely low and tissue distribution is ill defined. To better assess posaconazole efficacy against acute and chronic Chagas disease, we have exploited a highly sensitive bioluminescence imaging system which generates data with greater accuracy than other methods, including PCR-based approaches. Mice inoculated with bioluminescentT. cruziwere assessed byin vivoandex vivoimaging, with cyclophosphamide-induced immunosuppression used to enhance the detection of relapse. Posaconazole was found to be significantly inferior to benznidazole as a treatment for both acute and chronicT. cruziinfections. Whereas 20 days treatment with benznidazole was 100% successful in achieving sterile cure, posaconazole failed in almost all cases. Treatment of chronic infections with posaconazole did however significantly reduce infection-induced splenomegaly, even in the absence of parasitological cure. The imaging-based screening system also revealed that adipose tissue is a major site of recrudescence in mice treated with posaconazole in the acute, but not the chronic stage of infection. Thisin vivoscreening model for Chagas disease is predictive, reproducible and adaptable to diverse treatment schedules. It should provide greater assurance that drugs are not advanced prematurely into clinical trial.


2015 ◽  
Vol 59 (6) ◽  
pp. 3645-3647 ◽  
Author(s):  
Carolina B. Moraes ◽  
Karen L. White ◽  
Stéphanie Braillard ◽  
Catherine Perez ◽  
Junghyun Goo ◽  
...  

ABSTRACTWith the aim of improving the available drugs for the treatment of Chagas disease, individual enantiomers of nifurtimox were characterized. The results indicate that the enantiomers are equivalent in theirin vitroactivity against a panel ofTrypanosoma cruzistrains;in vivoefficacy in a murine model of Chagas disease;in vitrotoxicity and absorption, distribution, metabolism, and excretion characteristics; andin vivopharmacokinetic properties. There is unlikely to be any therapeutic benefit of an individual nifurtimox enantiomer over the racemic mixture.


2014 ◽  
Vol 59 (3) ◽  
pp. 1398-1404 ◽  
Author(s):  
Guzmán Álvarez ◽  
Javier Varela ◽  
Eugenia Cruces ◽  
Marcelo Fernández ◽  
Martín Gabay ◽  
...  

ABSTRACTAlthough the parasitic infection Chagas' disease was described over 100 years ago, even now there are not suitable drugs. The available drugs nifurtimox and benznidazole have limited efficacies and tolerances, with proven mutagenic effects. Attempting to find appropriate drugs to deal with this problem, here we report on the development and pharmacological characterization of new amide-containing thiazoles. In the present study, we evaluated thein vitroandin vivoeffects of new candidates againstTrypanosoma cruzi, the etiological agent of Chagas' disease. The lead amide-containing thiazole derivative had potentin vitroactivity, an absence of bothin vitromutagenic andin vivoclastogenic effects, and excellentin vitroselectivity andin vivotolerance. The compound suppressed parasitemia in mice, modifying the anti-T. cruziantibodies like the reference drug, benznidazole, and displayed the lowest mortality among the tested drugs. The present evidence suggests that this compound is a promising anti-T. cruziagent surpassing the lead optimization stage in drug development and leading to a candidate for preclinical study.


2013 ◽  
Vol 57 (9) ◽  
pp. 4151-4163 ◽  
Author(s):  
Maria de Nazaré Correia Soeiro ◽  
Elen Mello de Souza ◽  
Cristiane França da Silva ◽  
Denise da Gama Jaen Batista ◽  
Marcos Meuser Batista ◽  
...  

ABSTRACTChagas disease affects more than 10 million people worldwide, and yet, as it has historically been known as a disease of the poor, it remains highly neglected. Two currently available drugs exhibit severe toxicity and low effectiveness, especially in the chronic phase, while new drug discovery has been halted for years as a result of a lack of interest from pharmaceutical companies. Although attempts to repurpose the antifungal drugs posaconazole and ravuconazole (inhibitors of fungal sterol 14α-demethylase [CYP51]) are finally in progress, development of cheaper and more efficient, preferablyTrypanosoma cruzi-specific, chemotherapies would be highly advantageous. We have recently reported that the experimentalT. cruziCYP51 inhibitor VNI cures with 100% survival and 100% parasitological clearance both acute and chronic murine infections with the Tulahuen strain ofT. cruzi. In this work, we further explored the potential of VNI by assaying nitro-derivative-resistantT. cruzistrains, Y and Colombiana, in highly stringent protocols of acute infection. The data show high antiparasitic efficacy of VNI and its derivative (VNI/VNF) against both forms ofT. cruzithat are relevant for mammalian host infection (bloodstream and amastigotes), with thein vivopotency, at 25 mg/kg twice a day (b.i.d.), similar to that of benznidazole (100 mg/kg/day). Transmission electron microscopy and reverse mutation tests were performed to explore cellular ultrastructural and mutagenic aspects of VNI, respectively. No mutagenic potential could be seen by the Ames test at up to 3.5 μM, and the main ultrastructural damage induced by VNI inT. cruziwas related to Golgi apparatus and endoplasmic reticulum organization, with membrane blebs presenting an autophagic phenotype. Thus, these preliminary studies confirm VNI as a very promising trypanocidal drug candidate for Chagas disease therapy.


2019 ◽  
Vol 63 (5) ◽  
Author(s):  
Christiane Bezerra de Araujo ◽  
Loyze Paola de Lima ◽  
Simone Guedes Calderano ◽  
Flávia Silva Damasceno ◽  
Ariel M. Silber ◽  
...  

ABSTRACT Pep5 (WELVVLGKL) is a fragment of cyclin D2 that exhibits a 2-fold increase in the S phase of the HeLa cell cycle. When covalently bound to a cell-penetrating peptide (Pep5-cpp), the nonapeptide induces cell death in several tumor cells, including breast cancer and melanoma cells. Additionally, Pep5-cpp reduces the in vivo tumor volume of rat glioblastoma. Chagas disease, which is caused by the flagellated parasite Trypanosoma cruzi, is a neglected disease that occurs mainly in the Americas, where it is considered an important public health issue. Given that there are only two options for treating the disease, it is exceptionally crucial to search for new molecules with potential pharmacological action against the parasites. In this study, we demonstrate that Pep5-cpp induces cell death in epimastigote, trypomastigote, and amastigote forms of T. cruzi. The Pep5-cpp peptide was also able to decrease the percentage of infected cells without causing any detectable toxic effects in mammalian host cells. The infective, i.e., trypomastigote form of T. cruzi pretreated with Pep5-cpp was unable to infect LLC-MK2 monkey kidney cells. Also, Pep5-binding proteins were identified by mass spectrometry, including calmodulin-ubiquitin-associated protein, which is related to the virulence and parasitemia of T. cruzi. Taken together, these data suggest that Pep5 can be used as a novel alternative for the treatment of Chagas disease.


2016 ◽  
Vol 60 (4) ◽  
pp. 2425-2434 ◽  
Author(s):  
F. H. Guedes-da-Silva ◽  
D. G. J. Batista ◽  
M. B. Meuser ◽  
K. C. Demarque ◽  
T. O. Fulco ◽  
...  

ABSTRACTArylimidamides (AIAs) have been shown to have considerable biological activity against intracellular pathogens, includingTrypanosoma cruzi, which causes Chagas disease. In the present study, the activities of 12 novel bis-AIAs and 2 mono-AIAs against different strains ofT. cruziin vitroandin vivowere analyzed. The most active wasm-terphenyl bis-AIA (35DAP073), which had a 50% effective concentration (EC50) of 0.5 μM for trypomastigotes (Y strain), which made it 26-fold more effective than benznidazole (Bz; 13 μM). It was also active against the Colombiana strain (EC50= 3.8 μM). Analysis of the activity against intracellular forms of the Tulahuen strain showed that this bis-AIA (EC50= 0.04 μM) was about 100-fold more active than Bz (2 μM). The trypanocidal effect was dissociated from the ability to trigger intracellular lipid bodies within host cells, detected by oil red labeling. Both an active compound (35DAP073) and an inactive compound (26SMB060) displayed similar activation profiles. Due to their high selectivity indexes, two AIAs (35DAP073 and 35DAP081) were moved toin vivostudies, but because of the results of acute toxicity assays, 35DAP081 was excluded from the subsequent tests. The findings obtained with 35DAP073 treatment of infections caused by the Y strain revealed that 2 days of therapy induced a dose-dependent action, leading to 96 to 46% reductions in the level of parasitemia. However, the administration of 10 daily doses in animals infected with the Colombiana strain resulted in toxicity, preventing longer periods of treatment. The activity of the combination of 0.5 mg/kg of body weight/day 35DAP073 with 100 mg/kg/day Bz for 10 consecutive days was then assayed. Treatment with the combination resulted in the suppression of parasitemia, the elimination of neurological toxic effects, and survival of 100% of the animals. Quantitative PCR showed a considerable reduction in the parasite load (60%) compared to that achieved with Bz or the amidine alone. Our results support further investigations of this class with the aim of developing novel alternatives for the treatment of Chagas disease.


2021 ◽  
Vol 14 (7) ◽  
pp. 644
Author(s):  
Cintya Perdomo ◽  
Elena Aguilera ◽  
Ileana Corvo ◽  
Paula Faral-Tello ◽  
Elva Serna ◽  
...  

The trypanosomatid parasites Trypanosoma brucei, Trypanosoma cruzi and Leishmania are the causative agents of human African trypanosomiasis, Chagas Disease and Leishmaniasis, respectively. These infections primarily affect poor, rural communities in the developing world, and are responsible for trapping sufferers and their families in a disease/poverty cycle. The development of new chemotherapies is a priority given that existing drug treatments are problematic. In our search for novel anti-trypanosomatid agents, we assess the growth-inhibitory properties of >450 compounds from in-house and/or “Pathogen Box” (PBox) libraries against L. infantum, L. amazonensis, L.braziliensis, T. cruzi and T. brucei and evaluate the toxicities of the most promising agents towards murine macrophages. Screens using the in-house series identified 17 structures with activity against and selective toward Leishmania: Compounds displayed 50% inhibitory concentrations between 0.09 and 25 μM and had selectivity index values >10. For the PBox library, ~20% of chemicals exhibited anti-parasitic properties including five structures whose activity against L. infantum had not been reported before. These five compounds displayed no toxicity towards murine macrophages over the range tested with three being active in an in vivo murine model of the cutaneous disease, with 100% survival of infected animals. Additionally, the oral combination of three of them in the in vivo Chagas disease murine model demonstrated full control of the parasitemia. Interestingly, phenotyping revealed that the reference strain responds differently to the five PBox-derived chemicals relative to parasites isolated from a dog. Together, our data identified one drug candidate that displays activity against Leishmania and other Trypanosomatidae in vitro and in vivo, while exhibiting low toxicity to cultured mammalian cells and low in vivo acute toxicity.


Sign in / Sign up

Export Citation Format

Share Document