scholarly journals Neurotrophin Receptor TrkC Is an Entry Receptor for Trypanosoma cruzi in Neural, Glial, and Epithelial Cells

2011 ◽  
Vol 79 (10) ◽  
pp. 4081-4087 ◽  
Author(s):  
Craig Weinkauf ◽  
Ryan Salvador ◽  
Mercio PereiraPerrin

ABSTRACTTrypanosoma cruzi, the agent of Chagas' disease, infects a variety of mammalian cells in a process that includes multiple cycles of intracellular division and differentiation starting with host receptor recognition by a parasite ligand(s). Earlier work in our laboratory showed that the neurotrophin-3 (NT-3) receptor TrkC is activated byT. cruzisurfacetrans-sialidase, also known as parasite-derived neurotrophic factor (PDNF). However, it has remained unclear whether TrkC is used byT. cruzito enter host cells. Here, we show that a neuronal cell line (PC12-NNR5) relatively resistant toT. cruzibecame highly susceptible to infection when overexpressing human TrkC but not human TrkB. Furthermore,trkCtransfection conferred an ∼3.0-fold intracellular growth advantage. Sialylation-deficient Chinese hamster ovarian (CHO) epithelial cell lines Lec1 and Lec2 also became much more permissive toT. cruziafter transfection with thetrkCgene. Additionally, NT-3 specifically blockedT. cruziinfection of the TrkC-NNR5 transfectants and of naturally permissive TrkC-bearing Schwann cells and astrocytes, as did recombinant PDNF. Two specific inhibitors of Trk autophosphorylation (K252a and AG879) and inhibitors of Trk-induced MAPK/Erk (U0126) and Akt kinase (LY294002) signaling, but not an inhibitor of insulin-like growth factor 1 receptor, abrogated TrkC-mediated cell invasion. Antibody to TrkC blockedT. cruziinfection of the TrkC-NNR5 transfectants and of cells that naturally express TrkC. The TrkC antibody also significantly and specifically reduced cutaneous infection in a mouse model of acute Chagas' disease. TrkC is ubiquitously expressed in the peripheral and central nervous systems, and in nonneural cells infected byT. cruzi, including cardiac and gastrointestinal muscle cells. Thus, TrkC is implicated as a functional PDNF receptor in cell entry, independently of sialic acid recognition, mediating broadT. cruziinfection bothin vitroandin vivo.

2016 ◽  
Vol 60 (4) ◽  
pp. 2425-2434 ◽  
Author(s):  
F. H. Guedes-da-Silva ◽  
D. G. J. Batista ◽  
M. B. Meuser ◽  
K. C. Demarque ◽  
T. O. Fulco ◽  
...  

ABSTRACTArylimidamides (AIAs) have been shown to have considerable biological activity against intracellular pathogens, includingTrypanosoma cruzi, which causes Chagas disease. In the present study, the activities of 12 novel bis-AIAs and 2 mono-AIAs against different strains ofT. cruziin vitroandin vivowere analyzed. The most active wasm-terphenyl bis-AIA (35DAP073), which had a 50% effective concentration (EC50) of 0.5 μM for trypomastigotes (Y strain), which made it 26-fold more effective than benznidazole (Bz; 13 μM). It was also active against the Colombiana strain (EC50= 3.8 μM). Analysis of the activity against intracellular forms of the Tulahuen strain showed that this bis-AIA (EC50= 0.04 μM) was about 100-fold more active than Bz (2 μM). The trypanocidal effect was dissociated from the ability to trigger intracellular lipid bodies within host cells, detected by oil red labeling. Both an active compound (35DAP073) and an inactive compound (26SMB060) displayed similar activation profiles. Due to their high selectivity indexes, two AIAs (35DAP073 and 35DAP081) were moved toin vivostudies, but because of the results of acute toxicity assays, 35DAP081 was excluded from the subsequent tests. The findings obtained with 35DAP073 treatment of infections caused by the Y strain revealed that 2 days of therapy induced a dose-dependent action, leading to 96 to 46% reductions in the level of parasitemia. However, the administration of 10 daily doses in animals infected with the Colombiana strain resulted in toxicity, preventing longer periods of treatment. The activity of the combination of 0.5 mg/kg of body weight/day 35DAP073 with 100 mg/kg/day Bz for 10 consecutive days was then assayed. Treatment with the combination resulted in the suppression of parasitemia, the elimination of neurological toxic effects, and survival of 100% of the animals. Quantitative PCR showed a considerable reduction in the parasite load (60%) compared to that achieved with Bz or the amidine alone. Our results support further investigations of this class with the aim of developing novel alternatives for the treatment of Chagas disease.


2014 ◽  
Vol 82 (7) ◽  
pp. 2890-2901 ◽  
Author(s):  
Marilena Gallotta ◽  
Giovanni Gancitano ◽  
Giampiero Pietrocola ◽  
Marirosa Mora ◽  
Alfredo Pezzicoli ◽  
...  

ABSTRACTGroup A streptococcus (GAS) is a human pathogen causing a wide repertoire of mild and severe diseases for which no vaccine is yet available. We recently reported the identification of three protein antigens that in combination conferred wide protection against GAS infection in mice. Here we focused our attention on the characterization of one of these three antigens, Spy0269, a highly conserved, surface-exposed, and immunogenic protein of unknown function. Deletion of thespy0269gene in a GAS M1 isolate resulted in very long bacterial chains, which is indicative of an impaired capacity of the knockout mutant to properly divide. Confocal microscopy and immunoprecipitation experiments demonstrated that the protein was mainly localized at the cell septum and could interactin vitrowith the cell division protein FtsZ, leading us to hypothesize that Spy0269 is a member of the GAS divisome machinery. Predicted structural domains and sequence homologies with known streptococcal adhesins suggested that this antigen could also play a role in mediating GAS interaction with host cells. This hypothesis was confirmed by showing that recombinant Spy0269 could bind to mammalian epithelial cellsin vitroand thatLactococcus lactisexpressing Spy0269 on its cell surface could adhere to mammalian cellsin vitroand to mice nasal mucosain vivo. On the basis of these data, we believe that Spy0269 is involved both in bacterial cell division and in adhesion to host cells and we propose to rename this multifunctional moonlighting protein as SpyAD (StreptococcuspyogenesAdhesion andDivision protein).


2004 ◽  
Vol 48 (7) ◽  
pp. 2379-2387 ◽  
Author(s):  
Julio A. Urbina ◽  
Juan Luis Concepcion ◽  
Aura Caldera ◽  
Gilberto Payares ◽  
Cristina Sanoja ◽  
...  

ABSTRACT Chagas' disease is a serious public health problem in Latin America, and no treatment is available for the prevalent chronic stage. Its causative agent, Trypanosoma cruzi, requires specific endogenous sterols for survival, and we have recently demonstrated that squalene synthase (SQS) is a promising target for antiparasitic chemotherapy. E5700 and ER-119884 are quinuclidine-based inhibitors of mammalian SQS that are currently in development as cholesterol- and triglyceride-lowering agents in humans. These compounds were found to be potent noncompetitive or mixed-type inhibitors of T. cruzi SQS with K i values in the low nanomolar to subnanomolar range in the absence or presence of 20 μM inorganic pyrophosphate. The antiproliferative 50% inhibitory concentrations of the compounds against extracellular epimastigotes and intracellular amastigotes were ca. 10 nM and 0.4 to 1.6 nM, respectively, with no effects on host cells. When treated with these compounds at the MIC, all of the parasite's sterols disappeared from the parasite cells. In vivo studies indicated that E5700 was able to provide full protection against death and completely arrested the development of parasitemia when given at a concentration of 50 mg/kg of body weight/day for 30 days, while ER-119884 provided only partial protection. This is the first report of an orally active SQS inhibitor that is capable of providing complete protection against fulminant, acute Chagas' disease.


2020 ◽  
Vol 64 (9) ◽  
Author(s):  
Julianna Siciliano de Araújo ◽  
Cristiane França da Silva ◽  
Denise da Gama Jaén Batista ◽  
Aline Nefertiti ◽  
Ludmila Ferreira de Almeida Fiuza ◽  
...  

ABSTRACT Pyrazolones are heterocyclic compounds with interesting biological properties. Some derivatives inhibit phosphodiesterases (PDEs) and thereby increase the cellular concentration of cyclic AMP (cAMP), which plays a vital role in the control of metabolism in eukaryotic cells, including the protozoan Trypanosoma cruzi, the etiological agent of Chagas disease (CD), a major neglected tropical disease. In vitro phenotypic screening identified a 4-bromophenyl-dihydropyrazole dimer as an anti-T. cruzi hit and 17 novel pyrazolone analogues with variations on the phenyl ring were investigated in a panel of phenotypic laboratory models. Potent activity against the intracellular forms (Tulahuen and Y strains) was obtained with 50% effective concentration (EC50) values within the 0.17 to 3.3 μM range. Although most were not active against bloodstream trypomastigotes, an altered morphology and loss of infectivity were observed. Pretreatment of the mammalian host cells with pyrazolones did not interfere with infection and proliferation, showing that the drug activity was not the result of changes to host cell metabolism. The pyrazolone NPD-227 increased the intracellular cAMP levels and was able to sterilize T. cruzi-infected cell cultures. Thus, due to its high potency and selectivity in vitro, and its additive interaction with benznidazole (Bz), NPD-227 was next assessed in the acute mouse model. Oral dosing for 5 days of NPD-227 at 10 mg/kg + Bz at 10 mg/kg not only reduced parasitemia (>87%) but also protected against mortality (>83% survival), hence demonstrating superiority to the monotherapy schemes. These data support these pyrazolone molecules as potential novel therapeutic alternatives for Chagas disease.


2014 ◽  
Vol 21 (11) ◽  
pp. 1550-1559 ◽  
Author(s):  
Benjamin J. Koestler ◽  
Sergey S. Seregin ◽  
David P. W. Rastall ◽  
Yasser A. Aldhamen ◽  
Sarah Godbehere ◽  
...  

ABSTRACTThe bacterial second messenger cyclic di-GMP (c-di-GMP) stimulates inflammation by initiating innate immune cell recruitment and triggering the release of proinflammatory cytokines and chemokines. These properties make c-di-GMP a promising candidate for use as a vaccine adjuvant, and numerous studies have demonstrated that administration of purified c-di-GMP with different antigens increases protection against infection in animal models. Here, we have developed a novel approach to produce c-di-GMP inside host cells as an adjuvant to exploit a host-pathogen interaction and initiate an innate immune response. We have demonstrated that c-di-GMP can be synthesizedin vivoby transducing a diguanylate cyclase (DGC) gene into mammalian cells using an adenovirus serotype 5 (Ad5) vector. Expression of DGC led to the production of c-di-GMPin vitroandin vivo, and this was able to alter proinflammatory gene expression in murine tissues and increase the secretion of numerous cytokines and chemokines when administered to animals. Furthermore, coexpression of DGC modestly increased T-cell responses to aClostridium difficileantigen expressed from an adenovirus vaccine, although no significant differences in antibody titers were observed. This adenovirus c-di-GMP delivery system offers a novel method to administer c-di-GMP as an adjuvant to stimulate innate immunity during vaccination.


2015 ◽  
Vol 59 (6) ◽  
pp. 3645-3647 ◽  
Author(s):  
Carolina B. Moraes ◽  
Karen L. White ◽  
Stéphanie Braillard ◽  
Catherine Perez ◽  
Junghyun Goo ◽  
...  

ABSTRACTWith the aim of improving the available drugs for the treatment of Chagas disease, individual enantiomers of nifurtimox were characterized. The results indicate that the enantiomers are equivalent in theirin vitroactivity against a panel ofTrypanosoma cruzistrains;in vivoefficacy in a murine model of Chagas disease;in vitrotoxicity and absorption, distribution, metabolism, and excretion characteristics; andin vivopharmacokinetic properties. There is unlikely to be any therapeutic benefit of an individual nifurtimox enantiomer over the racemic mixture.


2019 ◽  
Vol 64 (2) ◽  
Author(s):  
Roberto I. Cuevas-Hernández ◽  
Richard M. B. M. Girard ◽  
Sarai Martínez-Cerón ◽  
Marcelo Santos da Silva ◽  
Maria Carolina Elias ◽  
...  

ABSTRACT Chagas disease (CD) is a human infection caused by Trypanosoma cruzi. CD was traditionally endemic to the Americas; however, due to migration it has spread to countries where it is not endemic. The current chemotherapy to treat CD induces several side effects, and its effectiveness in the chronic phase of the disease is controversial. In this contribution, substituted phenylbenzothiazole derivatives were synthesized and biologically evaluated as trypanocidal agents against Trypanosoma cruzi. The trypanocidal activities of the most promising compounds were determined through systematic in vitro screening, and their modes of action were determined as well. The physicochemical-structural characteristics responsible for the trypanocidal effects were identified, and their possible therapeutic application in Chagas disease is discussed. Our results show that the fluorinated compound 2-methoxy-4-[5-(trifluoromethyl)-1,3-benzothiazol-2-yl] phenol (BT10) has the ability to inhibit the proliferation of epimastigotes [IC50(Epi) = 23.1 ± 1.75 μM] and intracellular forms of trypomastigotes [IC50(Tryp) = 8.5 ± 2.9 μM] and diminishes the infection index by more than 80%. In addition, BT10 has the ability to selectively fragment 68% of the kinetoplastid DNA compared with 5% of nucleus DNA. The mode of action for BT10 on T. cruzi suggests that the development of fluorinated phenylbenzothiazole with electron-withdrawing substituent is a promising strategy for the design of trypanocidal drugs.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Rômulo D. Novaes ◽  
Eliziária C. Santos ◽  
Marli C. Cupertino ◽  
Daniel S. S. Bastos ◽  
Andréa A. S. Mendonça ◽  
...  

Suramin (Sur) acts as an ecto-NTPDase inhibitor in Trypanosoma cruzi and a P2-purinoceptor antagonist in mammalian cells. Although the potent antitrypanosomal effect of Sur has been shown in vitro, limited evidence in vivo suggests that this drug can be dangerous to T. cruzi-infected hosts. Therefore, we investigated the dose-dependent effect of Sur-based chemotherapy in a murine model of Chagas disease. Seventy uninfected and T. cruzi-infected male C57BL/6 mice were randomized into five groups: SAL = uninfected; INF = infected; SR5, SR10, and SR20 = infected treated with 5, 10, or 20 mg/kg Sur. In addition to its effect on blood and heart parasitism, the impact of Sur-based chemotherapy on leucocytes myocardial infiltration, cytokine levels, antioxidant defenses, reactive tissue damage, and mortality was analyzed. Our results indicated that animals treated with 10 and 20 mg/kg Sur were disproportionally susceptible to T. cruzi, exhibiting increased parasitemia and cardiac parasitism (amastigote nests and parasite load (T. cruzi DNA)), intense protein, lipid and DNA oxidation, marked myocarditis, and mortality. Animals treated with Sur also exhibited reduced levels of nonprotein antioxidants. However, the upregulation of catalase, superoxide dismutase, and glutathione-S-transferase was insufficient to counteract reactive tissue damage and pathological myocardial remodeling. It is still poorly understood whether Sur exerts a negative impact on the purinergic signaling of T. cruzi-infected host cells. However, our findings clearly demonstrated that through enhanced parasitism, inflammation, and reactive tissue damage, Sur-based chemotherapy contributes to aggravating myocarditis and increasing mortality rates in T. cruzi-infected mice, contradicting the supposed relevance attributed to this drug for the treatment of Chagas disease.


2016 ◽  
Vol 83 (3) ◽  
Author(s):  
Liujie Huo ◽  
Ayşe Ökesli ◽  
Ming Zhao ◽  
Wilfred A. van der Donk

ABSTRACT Lantibiotics are ribosomally synthesized and posttranslationally modified antimicrobial peptides that are characterized by the thioether cross-linked bisamino acids lanthionine (Lan) and methyllanthionine (MeLan). Duramycin contains 19 amino acids, including one Lan and two MeLans, an unusual lysinoalanine (Lal) bridge formed from the ε-amino group of lysine 19 and a serine residue at position 6, and an erythro-3-hydroxy-l-aspartic acid at position 15. These modifications are important for the interactions of duramycin with its biological target, phosphatidylethanolamine (PE). Based on the binding affinity and specificity for PE, duramycin has been investigated as a potential therapeutic, as a molecular probe to investigate the role and localization of PE in biological systems, and to block viral entry into mammalian cells. In this study, we identified the duramycin biosynthetic gene cluster by genome sequencing of Streptomyces cinnamoneus ATCC 12686 and investigated the dur biosynthetic machinery by heterologous expression in Escherichia coli. In addition, the analog duramycin C, containing six amino acid changes compared to duramycin, was successfully generated in E. coli. The substrate recognition motif of DurX, an α-ketoglutarate/iron(II)-dependent hydroxylase that carries out the hydroxylation of aspartate 15 of the precursor peptide DurA, was also investigated using mutagenesis of the DurA peptide. Both in vivo and in vitro results demonstrated that Gly16 is important for DurX activity. IMPORTANCE Duramycin is a natural product produced by certain bacteria that binds to phosphatidylethanolamine (PE). Because PE is involved in many cellular processes, duramycin is an antibiotic that kills bacteria, but it has also been used as a molecular probe to detect PE and monitor its localization in mammalian cells and even whole organisms, and it was recently shown to display broad-spectrum inhibition of viral entry into host cells. In addition, the molecule has been evaluated as treatment for cystic fibrosis. We report here the genes that are involved in duramycin biosynthesis, and we produced duramycin by expressing those genes in Escherichia coli. We show that duramycin analogs can also be produced. The ability to access duramycin and analogs by production in E. coli opens opportunities to improve duramycin as an antibiotic, PE probe, antiviral, or cystic fibrosis therapeutic.


2019 ◽  
Vol 63 (5) ◽  
Author(s):  
Christiane Bezerra de Araujo ◽  
Loyze Paola de Lima ◽  
Simone Guedes Calderano ◽  
Flávia Silva Damasceno ◽  
Ariel M. Silber ◽  
...  

ABSTRACT Pep5 (WELVVLGKL) is a fragment of cyclin D2 that exhibits a 2-fold increase in the S phase of the HeLa cell cycle. When covalently bound to a cell-penetrating peptide (Pep5-cpp), the nonapeptide induces cell death in several tumor cells, including breast cancer and melanoma cells. Additionally, Pep5-cpp reduces the in vivo tumor volume of rat glioblastoma. Chagas disease, which is caused by the flagellated parasite Trypanosoma cruzi, is a neglected disease that occurs mainly in the Americas, where it is considered an important public health issue. Given that there are only two options for treating the disease, it is exceptionally crucial to search for new molecules with potential pharmacological action against the parasites. In this study, we demonstrate that Pep5-cpp induces cell death in epimastigote, trypomastigote, and amastigote forms of T. cruzi. The Pep5-cpp peptide was also able to decrease the percentage of infected cells without causing any detectable toxic effects in mammalian host cells. The infective, i.e., trypomastigote form of T. cruzi pretreated with Pep5-cpp was unable to infect LLC-MK2 monkey kidney cells. Also, Pep5-binding proteins were identified by mass spectrometry, including calmodulin-ubiquitin-associated protein, which is related to the virulence and parasitemia of T. cruzi. Taken together, these data suggest that Pep5 can be used as a novel alternative for the treatment of Chagas disease.


Sign in / Sign up

Export Citation Format

Share Document