scholarly journals Next-Generation Sequencing and Bioinformatics Protocol for Malaria Drug Resistance Marker Surveillance

2018 ◽  
Vol 62 (4) ◽  
pp. e02474-17 ◽  
Author(s):  
Eldin Talundzic ◽  
Shashidhar Ravishankar ◽  
Julia Kelley ◽  
Dhruviben Patel ◽  
Mateusz Plucinski ◽  
...  

ABSTRACT The recent advances in next-generation sequencing technologies provide a new and effective way of tracking malaria drug-resistant parasites. To take advantage of this technology, an end-to-end Illumina targeted amplicon deep sequencing (TADS) and bioinformatics pipeline for molecular surveillance of drug resistance in P. falciparum, called malaria resistance surveillance (MaRS), was developed. TADS relies on PCR enriching genomic regions, specifically target genes of interest, prior to deep sequencing. MaRS enables researchers to simultaneously collect data on allele frequencies of multiple full-length P. falciparum drug resistance genes (crt, mdr1, k13, dhfr, dhps, and the cytochrome b gene), as well as the mitochondrial genome. Information is captured at the individual patient level for both known and potential new single nucleotide polymorphisms associated with drug resistance. The MaRS pipeline was validated using 245 imported malaria cases that were reported to the Centers for Disease Control and Prevention (CDC). The chloroquine resistance crt CVIET genotype (mutations underlined) was observed in 42% of samples, the highly pyrimethamine-resistant dhps IRN triple mutant in 92% of samples, and the sulfadoxine resistance dhps mutation SGEAA in 26% of samples. The mdr1 NFSND genotype was found in 40% of samples. With the exception of two cases imported from Cambodia, no artemisinin resistance k13 alleles were identified, and 99% of patients carried parasites susceptible to atovaquone-proguanil. Our goal is to implement MaRS at the CDC for routine surveillance of imported malaria cases in the United States and to aid in the adoption of this system at participating state public health laboratories, as well as by global partners.

2018 ◽  
Vol 56 (6) ◽  
Author(s):  
L. T. Daum ◽  
O. S. Konstantynovska ◽  
O. S. Solodiankin ◽  
O. O. Liashenko ◽  
P. I. Poteiko ◽  
...  

ABSTRACTThe Ukraine ranks among the top 20 countries with the highest number of multidrug-resistant (MDR) and extensively drug resistant (XDR)Mycobacterium tuberculosiscases in the world. However, little is known of the genetic diversity, i.e., resistance signatures, in clinical isolates from this region. We analyzed seven of most prevalent MDR/XDR antibiotic resistance-conferring genes from clinical isolates (n= 75) collected from geographically diverse Ukrainian oblasts and the southern Crimean peninsula. Genomic analysis revealed that 6 (8%) were sensitive, 3 (4%) were resistant to at least one antibiotic but were not MDR, 40 (53%) were MDR, and 26 (35%) were XDR. The majority of isolates (81%) were of the Beijing-like lineage. This is the first study to use next-generation sequencing (NGS) of clinical isolates from the Ukraine to characterize mutations in genes conferringM. tuberculosisdrug resistance. Several isolates harbored drug resistance signatures that have not been observed in other countries with high-burden tuberculosis. Most notably, the absence ofinhAgene promoter mutations, a diversity of mutation types in therpoBresistance-determining region, and detection of heteroresistance provide a broader understanding of MDR/XDR from this area of the world.


2020 ◽  
Vol 64 (4) ◽  
Author(s):  
Benedicta A. Mensah ◽  
Ozkan Aydemir ◽  
James L. Myers-Hansen ◽  
Millicent Opoku ◽  
Nicholas J. Hathaway ◽  
...  

ABSTRACT A key drawback to monitoring the emergence and spread of antimalarial drug resistance in sub-Saharan Africa is early detection and containment. Next-generation sequencing methods offer the resolution, sensitivity, and scale required to fill this gap by surveilling for molecular markers of drug resistance. We performed targeted sequencing using molecular inversion probes to interrogate five Plasmodium falciparum genes (pfcrt, pfmdr1, pfdhps, pfdhfr, and pfk13) implicated in chloroquine, sulfadoxine-pyrimethamine (SP), and artemisinin resistance in two sites in Ghana. A total of 803 dried blood spots from children aged between 6 months and 14 years presenting with uncomplicated P. falciparum malaria at the Begoro District Hospital in Begoro and the Ewim Polyclinic in Cape Coast, Ghana, from 2014 to 2017 were prepared on filter paper. Thirteen years after the removal of drug pressure, chloroquine-sensitive parasite strains with pfcrt K76 have increased nearly to fixation in Begoro, in the forest area (prevalence = 95%), but at a lower rate in Cape Coast, in the coastal region (prevalence = 71%, Z = −3.5, P < 0.001). In addition, pfmdr1 184F-bearing parasites are under strong selection. The pfdhfr/pfdhps quadruple genotype (IRNGK), associated with SP resistance, is near saturation. Our study identified at a 2 to 10% prevalence pfdhps 581G, which is a sulfadoxine resistance marker that correlates with the failure of SP prophylaxis in pregnancy and which has not been observed in Ghana. The differences in the reexpansion of chloroquine-sensitive strains observed at the two study sites, the stronger SP resistance, and the high prevalence of pfmdr1 184F should be further monitored to inform malaria control strategies in Ghana.


Pathogens ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 264
Author(s):  
Miaomiao Li ◽  
Shujia Liang ◽  
Chao Zhou ◽  
Min Chen ◽  
Shu Liang ◽  
...  

Patients with antiretroviral therapy interruption have a high risk of virological failure when re-initiating antiretroviral therapy (ART), especially those with HIV drug resistance. Next-generation sequencing may provide close scrutiny on their minority drug resistance variant. A cross-sectional study was conducted in patients with ART interruption in five regions in China in 2016. Through Sanger and next-generation sequencing in parallel, HIV drug resistance was genotyped on their plasma samples. Rates of HIV drug resistance were compared by the McNemar tests. In total, 174 patients were included in this study, with a median 12 (interquartile range (IQR), 6–24) months of ART interruption. Most (86.2%) of them had received efavirenz (EFV)/nevirapine (NVP)-based first-line therapy for a median 16 (IQR, 7–26) months before ART interruption. Sixty-one (35.1%) patients had CRF07_BC HIV-1 strains, 58 (33.3%) CRF08_BC and 35 (20.1%) CRF01_AE. Thirty-four (19.5%) of the 174 patients were detected to harbor HIV drug-resistant variants on Sanger sequencing. Thirty-six (20.7%), 37 (21.3%), 42 (24.1%), 79 (45.4%) and 139 (79.9) patients were identified to have HIV drug resistance by next-generation sequencing at 20% (v.s. Sanger, p = 0.317), 10% (v.s. Sanger, p = 0.180), 5% (v.s. Sanger, p = 0.011), 2% (v.s. Sanger, p < 0.001) and 1% (v.s. Sanger, p < 0.001) of detection thresholds, respectively. K65R was the most common minority mutation, of 95.1% (58/61) and 93.1% (54/58) in CRF07_BC and CRF08_BC, respectively, when compared with 5.7% (2/35) in CRF01_AE (p < 0.001). In 49 patients that followed-up a median 10 months later, HIV drug resistance mutations at >20% frequency such as K103N, M184VI and P225H still existed, but with decreased frequencies. The prevalence of HIV drug resistance in ART interruption was higher than 15% in the survey. Next-generation sequencing was able to detect more minority drug resistance variants than Sanger. There was a sharp increase in minority drug resistance variants when the detection threshold was below 5%.


2021 ◽  
Vol 10 (25) ◽  
Author(s):  
Masatoshi Tsukahara ◽  
Kotaro Ise ◽  
Maiko Nezuo ◽  
Haruna Azuma ◽  
Takeshi Akao ◽  
...  

We report here the draft genome sequence for Saccharomyces cerevisiae strain Awamori number 101, an industrial strain used for producing awamori, a distilled alcohol beverage. It was constructed by assembling the short reads obtained by next-generation sequencing. The 315 contigs constitute an 11.5-Mbp genome sequence coding 6,185 predicted proteins.


2018 ◽  
Vol 46 (W1) ◽  
pp. W271-W277 ◽  
Author(s):  
Matthias Döring ◽  
Joachim Büch ◽  
Georg Friedrich ◽  
Alejandro Pironti ◽  
Prabhav Kalaghatgi ◽  
...  

2019 ◽  
Vol 121 ◽  
pp. 104207 ◽  
Author(s):  
Enagnon Kazali Alidjinou ◽  
Pauline Coulon ◽  
Christophe Hallaert ◽  
Olivier Robineau ◽  
Agnès Meybeck ◽  
...  

Author(s):  
Philippe Leprohon ◽  
Christopher Fernandez-Prada ◽  
Élodie Gazanion ◽  
Rubens Monte-Neto ◽  
Marc Ouellette

mBio ◽  
2013 ◽  
Vol 4 (1) ◽  
Author(s):  
Fernando Baquero ◽  
Raquel Tobes

ABSTRACT A recent study published in mBio [Y. H. Grad et al., mBio 4(1):e00452-12, 2013] indicates that a rapid introgressive evolution has occurred in Escherichia coli O104:H4 by sequential acquisition of foreign genetic material involving pathogenicity traits. O104 genetic promiscuity cannot be readily explained by high population sizes. However, extensive interactions leading to cumulative assemblies of pathogenicity genes might be assured by small K-strategist populations exploiting particular intestinal niches. Next-generation sequencing technologies will be critical to detect particular “gene cocktails” as potentially pathogenic ensembles and to predict the risk of future outbreaks.


Sign in / Sign up

Export Citation Format

Share Document