molecular inversion probes
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 23)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Jessie J.F. Medeiros ◽  
Jose-Mario Capo-Chichi ◽  
Liran I. Shlush ◽  
John E. Dick ◽  
Andrea Arruda ◽  
...  

Single-molecule molecular inversion probes (smMIPs) provides a modular and cost-effective platform for high-multiplex targeted next-generation sequencing (NGS). Nevertheless, translating the raw smMIP-derived sequencing data into accurate and meaningful information currently requires proficient computational skills and a large amount of computational work, prohibiting wide-scale adoption of smMIP-based technologies. To enable easy, efficient, and accurate interrogation of smMIP-derived data, we developed SmMIP-tools, a computational toolset that combines the critical analytic steps for smMIP data interpretation into a single computational pipeline. Here, we describe in detail two of the software's major components. The first is a read processing tool that performs quality control steps, generates read-smMIP linkages and retrieves molecular tags. The second is an error-aware variant caller capable of detecting single nucleotide variants (SNVs) and short insertions and deletions (indels). Using a cell-line DNA dilution series and a cohort of blood cancer patients, we benchmarked SmMIP-tools and evaluated its performance against clinical sequencing reports. We anticipate that SmMIP-tools will increase accessibility to smMIP-technology, enabling cost-effective genetic research to push personalized medicine forward.


2021 ◽  
Vol 22 (9) ◽  
pp. 4348
Author(s):  
Charity Chidzanga ◽  
Delphine Fleury ◽  
Ute Baumann ◽  
Dan Mullan ◽  
Sayuri Watanabe ◽  
...  

Genetic diversity, knowledge of the genetic architecture of the traits of interest and efficient means of transferring the desired genetic diversity into the relevant genetic background are prerequisites for plant breeding. Exotic germplasm is a rich source of genetic diversity; however, they harbor undesirable traits that limit their suitability for modern agriculture. Nested association mapping (NAM) populations are valuable genetic resources that enable incorporation of genetic diversity, dissection of complex traits and providing germplasm to breeding programs. We developed the OzNAM by crossing and backcrossing 73 diverse exotic parents to two Australian elite varieties Gladius and Scout. The NAM parents were genotyped using the iSelect wheat 90K Infinium SNP array, and the progeny were genotyped using a custom targeted genotyping-by-sequencing assay based on molecular inversion probes designed to target 12,179 SNPs chosen from the iSelect wheat 90K Infinium SNP array of the parents. In total, 3535 BC1F4:6 RILs from 125 families with 21 to 76 lines per family were genotyped and we found 4964 polymorphic and multi-allelic haplotype markers that spanned the whole genome. A subset of 530 lines from 28 families were evaluated in multi-environment trials over three years. To demonstrate the utility of the population in QTL mapping, we chose to map QTL for maturity and plant height using the RTM-GWAS approach and we identified novel and known QTL for maturity and plant height.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jiadi Wen ◽  
Brittany Grommisch ◽  
Autumn DiAdamo ◽  
Hongyan Chai ◽  
Sok Meng Evelyn Ng ◽  
...  

Abstract Background The OncoScan microarray assay (OMA) using highly multiplexed molecular inversion probes for single nucleotide polymorphism (SNP) loci enabled the detection of cytogenomic abnormalities of chromosomal imbalances and pathogenic copy number variants (pCNV). The small size of molecular inversion probes is optimal for SNP genotyping of fragmented DNA from fixed tissues. This retrospective study evaluated the clinical utility of OMA as a uniform platform to detect cytogenomic abnormalities for pregnancy loss from fresh and fixed tissues of products of conception (POC). Results Fresh specimens of POC were routinely subjected to cell culture and then analyzed by karyotyping. POC specimens with a normal karyotype (NK) or culture failure (CF) and from formalin-fixed paraffin-embedded (FFPE) tissues were subjected to DNA extraction for OMA. The abnormality detection rate (ADR) by OMA on 94 cases of POC-NK, 38 cases of POC-CF, and 35 cases of POC-FFPE tissues were 2% (2/94), 26% (10/38), and 57% (20/35), respectively. The detected cytogenomic abnormalities of aneuploidies, triploidies and pCNV accounted for 50%, 40% and 10% in POC-CF and 85%, 10% and 5% in POC-FFPE, respectively. False negative result from cultured maternal cells and maternal cell contamination were each detected in one case. OMA on two cases with unbalanced structural chromosome abnormalities further defined genomic imbalances and breakpoints. Conclusion OMA on POC-CF and POC-FFPE showed a high diagnostic yield of cytogenomic abnormalities. This approach circumvented the obstacles of CF from fresh specimens and fragmented DNA from fixed tissues and provided a reliable and effective platform for detecting cytogenomic abnormalities and monitoring true fetal result from maternal cell contamination.


Author(s):  
Sebastian Alexis Vishnopolska ◽  
Maria Florencia Mercogliano ◽  
Maria Andrea Camilletti ◽  
Amanda Helen Mortensen ◽  
Debora Braslavsky ◽  
...  

Abstract Purpose Congenital hypopituitarism (CH) can present in isolation or with other birth defects. Mutations in multiple genes can cause CH, and the use of a genetic screening panel could establish the prevalence of mutations in known and candidate genes for this disorder. It could also increase the proportion of patients that receive a genetic diagnosis. Methods We conducted target panel genetic screening using single-molecule molecular inversion probes sequencing to assess the frequency of mutations in known hypopituitarism genes and new candidates in Argentina. We captured genomic DNA from 170 pediatric patients with CH, either alone or with other abnormalities. We performed promoter activation assays to test the functional effects of patient variants in LHX3 and LHX4. Results We found variants classified as pathogenic, likely pathogenic or with uncertain significance in 15.3% of cases. These variants were identified in known CH causative genes (LHX3, LHX4, GLI2, OTX2 and HESX1), in less frequently reported genes (FOXA2, BMP4, FGFR1, PROKR2, PNPLA6) and in new candidate genes (BMP2, HMGA2, HNF1A, NKX2-1). Conclusion In this work, we report the prevalence of mutations in known CH genes in Argentina and provide evidence for new candidate genes. We show that CH is a genetically heterogeneous disease with high phenotypic variation and incomplete penetrance, and our results support the need for further gene discovery for CH. Identifying population-specific pathogenic variants will improve the capacity of genetic data to predict eventual clinical outcomes.


2021 ◽  
Author(s):  
Jiadi Wen ◽  
Brittany Grommisch ◽  
Autumn DiAdamo ◽  
Hongyan Chai ◽  
Sok Meng Evelyn Ng ◽  
...  

Abstract Background The OncoScan microarray assay (OMA) using highly multiplexed molecular inversion probes for single nucleotide polymorphism (SNP) loci enabled the detection of cytogenomic abnormalities of chromosomal imbalances and pathogenic copy number variants (pCNV). The small size of molecular inversion probes is optimal for SNP genotyping of fragmented DNA from fixed tissues. This retrospective study evaluated the clinical utility of OMA as a uniform platform to detect cytogenomic abnormalities for pregnancy loss from fresh and fixed tissues of products of conception (POC). Results Fresh specimens of POC were routinely subjected to cell culture and then analyzed by karyotyping. POC specimens with a normal karyotype (NK) or culture failure (CF) and from formalin-fixed paraffin-embedded (FFPE) tissues were subjected to DNA extraction for OMA. The abnormality detection rate (ADR) by OMA on 94 cases of POC-NK, 38 cases of POC-CF, and 35 cases of POC-FFPE tissues were 2% (2/94), 26% (10/38), and 57% (20/35), respectively. The detected cytogenomic abnormalities of aneuploidies, triploidies and pCNV accounted for 50%, 40% and 10% in POC-CF and 85%, 10% and 5% in POC-FFPE, respectively. False negative result from cultured maternal cells and maternal cell contamination (MCC) were each detected in one case. OMA on two cases with unbalanced structural chromosome abnormalities further defined genomic imbalances and breakpoints. Conclusion OMA on POC-CF and POC-FFPE showed a high diagnostic yield of cytogenomic abnormalities. This approach circumvented the obstacles of CF from fresh specimens and fragmented DNA from fixed tissues and provided a reliable and effective platform for detecting cytogenomic abnormalities and monitoring true fetal result from MCC.


2020 ◽  
Vol 30 (1) ◽  
pp. 100-113 ◽  
Author(s):  
Kara A. Moser ◽  
Rashid A. Madebe ◽  
Ozkan Aydemir ◽  
Mercy G. Chiduo ◽  
Celine I. Mandara ◽  
...  

Genes ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1240
Author(s):  
Agnieszka Rafalska ◽  
Anna M. Tracewska ◽  
Anna Turno-Kręcicka ◽  
Milena J. Szafraniec ◽  
Marta Misiuk-Hojło

CEP290 is a ciliary gene frequently mutated in ciliopathies, resulting in a broad range of phenotypes, ranging from isolated inherited retinal disorders (IRDs) to severe or lethal syndromes with multisystemic involvement. Patients with non-syndromic CEP290-linked disease experience profound and early vision loss due to cone-rod dystrophy, as in Leber congenital amaurosis. In this case report, we describe two novel loss-of-function heterozygous alterations in the CEP290 gene, discovered in a patient suffering from retinitis pigmentosa using massive parallel sequencing of a molecular inversion probes library constructed for 108 genes involved in IRDs. A milder phenotype than expected was found in the individual, which serves to prove that some CEP290-associated disorders may display preserved cone function.


2020 ◽  
Vol 24 (5) ◽  
pp. 571-577 ◽  
Author(s):  
Paola Dimartino ◽  
Valeria Mariani ◽  
Caterina Marconi ◽  
Raffaella Minardi ◽  
Manuela Bramerio ◽  
...  

2020 ◽  
Author(s):  
Prabhjyot Saini ◽  
Uladzislau Rudakou ◽  
Eric Yu ◽  
Jennifer A. Ruskey ◽  
Farnaz Asayesh ◽  
...  

AbstractRare mutations in genes originally discovered in multi-generational families have been associated with increased risk of Parkinson’s Disease (PD). The involvement of rare variants in DNAJC13, UCHL1, HTRA2, GIGYF2 and EIF4G1 loci have been poorly studied or produced conflicting results across cohorts. However, they are still being often referred to as “PD-genes” and used in different models. To further elucidate the role of these five genes in PD, we fully sequenced them using molecular inversion probes in 2,408 PD patients and 3,444 controls from 3 different cohorts. A total of 788 rare variants were identified across the five genes and three cohorts. Burden analyses and optimized sequence Kernel association tests revealed no significant association between any of the genes and PD after correction for multiple comparisons. Our results do not support an association of the five tested genes with PD. Combined with previous studies, it is unlikely that any of these genes plays an important role in PD. Their designation as “PARK” genes should be reconsidered.


Sign in / Sign up

Export Citation Format

Share Document