scholarly journals Metronidazole-Treated Porphyromonas gingivalis Persisters Invade Human Gingival Epithelial Cells and Perturb Innate Responses

2020 ◽  
Vol 64 (6) ◽  
Author(s):  
Chuan Wang ◽  
Tianfan Cheng ◽  
Xuan Li ◽  
Lijian Jin

ABSTRACT Periodontitis as a biofilm-associated inflammatory disease is highly prevalent worldwide. It severely affects oral health and yet closely links to systemic diseases like diabetes and cardiovascular disease. Porphyromonas gingivalis as a “keystone” periodontopathogen drives the shift of microbe-host symbiosis to dysbiosis and critically contributes to the pathogenesis of periodontitis. Persisters represent a tiny subset of biofilm-associated microbes highly tolerant to lethal treatment of antimicrobials, and, notably, metronidazole-tolerant P. gingivalis persisters have recently been identified by our group. This study further explored the interactive profiles of metronidazole-treated P. gingivalis persisters (M-PgPs) with human gingival epithelial cells (HGECs). P. gingivalis cells (ATCC 33277) at stationary phase were treated with a lethal dosage of metronidazole (100 μg/ml, 6 h) for generating M-PgPs. The interaction of M-PgPs with HGECs was assessed by microscopy, flow cytometry, cytokine profiling, and quantitative PCR (qPCR). We demonstrated that the overall morphology and ultracellular structure of M-PgPs remained unchanged. Importantly, M-PgPs maintained the capabilities to adhere to and invade HGECs. Moreover, M-PgPs significantly suppressed proinflammatory cytokine expression in HGECs at a level comparable to that seen with the untreated P. gingivalis cells, through the thermosensitive components. The present report reveals that P. gingivalis persisters induced by lethal treatment of antibiotics were able to maintain their capabilities to adhere to and invade human gingival epithelial cells and to perturb the innate host responses. Novel strategies and approaches need to be developed for tackling P. gingivalis and favorably modulating the dysregulated immunoinflammatory responses for oral/periodontal health and general well-being.

2004 ◽  
Vol 72 (7) ◽  
pp. 3752-3758 ◽  
Author(s):  
Yoonsuk Park ◽  
Özlem Yilmaz ◽  
Il-Young Jung ◽  
Richard J. Lamont

ABSTRACT Porphyromonas gingivalis, one of the causative agents of adult periodontitis, can invade and survive within host epithelial cells. The molecular mechanisms by which P. gingivalis induces uptake and adapts to an intracellular environment are not fully understood. In this study, we have investigated the genetic responses of P. gingivalis internalized within human gingival epithelial cells (GECs) in order to identify factors involved in invasion and survival. We compared the differential display of arbitrarily PCR-amplified gene transcripts in P. gingivalis recovered from GECs with the display of transcripts in P. gingivalis control cultures. Over 20 potential differentially expressed transcripts were identified. Among these, pepO, encoding an endopeptidase, and genes encoding an ATP-binding cassette (ABC) transporter and a cation-transporting ATPase were upregulated in GECs. To investigate the functionality of these gene products, mutants were generated by insertional inactivation. Compared to the parental strain, mutants of each gene showed a significant reduction in their invasion capabilities. In addition, GEC cytoskeletal responses to the mutants were distinct from those induced by the parent. In contrast, adhesion of the mutant strains to GECs was not affected by lack of expression of the gene products. These results suggest that PepO, a cation-transporting ATPase, and an ABC transporter are required for the intracellular lifestyle of P. gingivalis.


2014 ◽  
Vol 14 (1) ◽  
Author(s):  
Yoshiko Kato ◽  
Makoto Hagiwara ◽  
Yuichi Ishihara ◽  
Ryutaro Isoda ◽  
Shinsuke Sugiura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document