scholarly journals Molecular Diagnosis of Fluoroquinolone Resistance in Mycobacterium tuberculosis

2014 ◽  
Vol 59 (3) ◽  
pp. 1519-1524 ◽  
Author(s):  
Christine Bernard ◽  
Nicolas Veziris ◽  
Florence Brossier ◽  
Wladimir Sougakoff ◽  
Vincent Jarlier ◽  
...  

ABSTRACTAs a consequence of the use of fluoroquinolones (FQ), resistance to FQ has emerged, leading to cases of nearly untreatable and extensively drug-resistant tuberculosis. Mutations in DNA gyrase represent the main mechanism of FQ resistance. A full understanding of the pattern of mutations found in FQ-resistant (FQr) clinical isolates, and of their proportions, is crucial for improving molecular methods for the detection of FQ resistance inMycobacterium tuberculosis. In this study, we reviewed the detection of FQ resistance in isolates addressed to the French National Reference Center for Mycobacteria from 2007 to 2012, with the aim of evaluating the performance of PCR sequencing in a real-life context.gyrAandgyrBsequencing, performed prospectively onM. tuberculosisclinical isolates, was compared for FQ susceptibility to 2 mg/liter ofloxacin by the reference proportion method. A total of 605 isolates, of which 50% were multidrug resistant, were analyzed. The increase in FQrstrains among multidrug-resistant (MDR) strains during the time of the study was alarming (8% to 30%). The majority (78%) of the isolates withgyrAmutations were FQr, whereas only 36% of those withgyrBmutations were FQr. Only 12% of the FQrisolates had a single mutation ingyrB. CombinedgyrAandgyrBsequencing led to >93% sensitivity for detecting resistance. The analysis of the four false-positive and the five false-negative results ofgyrAandgyrBsequencing illustrated the actual limitations of the reference proportion method. Our data emphasize the need for combinedgyrAandgyrBsequencing in the investigation of FQ susceptibility inM. tuberculosisand challenge the validity of the current phenotype-based approach as the diagnostic gold standard for determining FQ resistance.

2015 ◽  
Vol 59 (12) ◽  
pp. 7805-7810 ◽  
Author(s):  
Johana Rueda ◽  
Teresa Realpe ◽  
Gloria Isabel Mejia ◽  
Elsa Zapata ◽  
Juan Carlos Rozo ◽  
...  

ABSTRACTEthionamide (ETH) is an antibiotic used for the treatment of multidrug-resistant (MDR) tuberculosis (TB) (MDR-TB), and its use may be limited with the emergence of resistance in theMycobacterium tuberculosispopulation. ETH resistance inM. tuberculosisis phenomenon independent or cross related when accompanied with isoniazid (INH) resistance. In most cases, resistance to INH and ETH is explained by mutations in theinhApromoter and in the following genes:katG,ethA,ethR,mshA,ndh, andinhA. We sequenced the above genes in 64M. tuberculosisisolates (n= 57 ETH-resistant MDR-TB isolates;n= 3 ETH-susceptible MDR-TB isolates; andn= 4 fully susceptible isolates). Each isolate was tested for susceptibility to first- and second-line drugs using the agar proportion method. Mutations were observed in ETH-resistant MDR-TB isolates at the following rates: 100% inkatG, 72% inethA, 45.6% inmshA, 8.7% inndh, and 33.3% ininhAor its promoter. Of the three ETH-susceptible MDR-TB isolates, all showed mutations inkatG; one had a mutation inethA, and another, inmshAandinhA. Finally, of the four fully susceptible isolates, two showed no detectable mutation in the studied genes, and two had mutations inmshAgene unrelated to the resistance. Mutations not previously reported were found in theethA,mshA,katG, andndhgenes. The concordance between the phenotypic susceptibility testing to INH and ETH and the sequencing was 1 and 0.45, respectively. Among isolates exhibiting INH resistance, the high frequency of independent resistance and cross-resistance with ETH in theM. tuberculosisisolates suggests the need to confirm the susceptibility to ETH before considering it in the treatment of patients with MDR-TB.


2014 ◽  
Vol 59 (1) ◽  
pp. 444-449 ◽  
Author(s):  
Analise Z. Reeves ◽  
Patricia J. Campbell ◽  
Melisa J. Willby ◽  
James E. Posey

ABSTRACTAs the prevalence of multidrug-resistant and extensively drug-resistant tuberculosis strains continues to rise, so does the need to develop accurate and rapid molecular tests to complement time-consuming growth-based drug susceptibility testing. Performance of molecular methods relies on the association of specific mutations with phenotypic drug resistance and while considerable progress has been made for resistance detection of first-line antituberculosis drugs, rapid detection of resistance for second-line drugs lags behind. TherrsA1401G allele is considered a strong predictor of cross-resistance between the three second-line injectable drugs, capreomycin (CAP), kanamycin, and amikacin. However, discordance is often observed between therrsA1401G mutation and CAP resistance, with up to 40% ofrrsA1401G mutants being classified as CAP susceptible. We measured the MICs to CAP in 53 clinical isolates harboring therrsA1401G mutation and found that the CAP MICs ranged from 8 μg/ml to 40 μg/ml. These results were drastically different from engineered A1401G mutants generated in isogenicMycobacterium tuberculosis, which exclusively exhibited high-level CAP MICs of 40 μg/ml. These data support the results of prior studies, which suggest that the critical concentration of CAP (10 μg/ml) used to determine resistance by indirect agar proportion may be too high to detect all CAP-resistant strains and suggest that a larger percentage of resistant isolates could be identified by lowering the critical concentration. These data also suggest that differences in resistance levels among clinical isolates are possibly due to second site or compensatory mutations located elsewhere in the genome.


2014 ◽  
Vol 58 (7) ◽  
pp. 4222-4223 ◽  
Author(s):  
Jim Werngren ◽  
Maria Wijkander ◽  
Nasrin Perskvist ◽  
V. Balasubramanian ◽  
Vasan K. Sambandamurthy ◽  
...  

ABSTRACTThe MIC of the novel antituberculosis (anti-TB) drug AZD5847 was determined against 146 clinical isolates from diverse geographical regions, including eastern Europe, North America, Africa, and Asia, using the automated Bactec Mycobacterial Growth Indicator Tube (MGIT) 960 system. These isolates originated from specimen sources such as sputum, bronchial alveolar lavage fluid, pleural fluid, abscess material, lung biopsies, and feces. The overall MIC90was 1.0 mg/liter (range, 0.125 to 4 mg/liter). The MICs of AZD5847 for isolates ofMycobacterium tuberculosiswere similar among drug-sensitive strains, multidrug-resistant (MDR) strains, and extensively drug resistant (XDR) strains. The goodin vitroactivity of AZD5847 againstM. tuberculosisand the lack of cross-resistance make this agent a promising anti-TB drug candidate.


2013 ◽  
Vol 58 (3) ◽  
pp. 1479-1487 ◽  
Author(s):  
Fei Zhao ◽  
Xu-De Wang ◽  
Luke N. Erber ◽  
Ming Luo ◽  
Ai-zhen Guo ◽  
...  

ABSTRACTThe mechanistic basis for the resistance ofMycobacterium tuberculosistopara-aminosalicylic acid (PAS), an important agent in the treatment of multidrug-resistant tuberculosis, has yet to be fully defined. As a substrate analog of the folate precursorpara-aminobenzoic acid, PAS is ultimately bioactivated to hydroxy dihydrofolate, which inhibits dihydrofolate reductase and disrupts the operation of folate-dependent metabolic pathways. As a result, the mutation of dihydrofolate synthase, an enzyme needed for the bioactivation of PAS, causes PAS resistance inM. tuberculosisstrain H37Rv. Here, we demonstrate that various missense mutations within the coding sequence of the dihydropteroate (H2Pte) binding pocket of dihydrofolate synthase (FolC) confer PAS resistance in laboratory isolates ofM. tuberculosisandMycobacterium bovis. From a panel of 85 multidrug-resistantM. tuberculosisclinical isolates, 5 were found to harbor mutations in thefolCgene within the H2Pte binding pocket, resulting in PAS resistance. While these alterations in the H2Pte binding pocket resulted in reduced dihydrofolate synthase activity, they also abolished the bioactivation of hydroxy dihydropteroate to hydroxy dihydrofolate. Consistent with this model for abolished bioactivation, the introduction of a wild-type copy offolCfully restored PAS susceptibility infolCmutant strains. Confirmation of this novel PAS resistance mechanism will be beneficial for the development of molecular method-based diagnostics forM. tuberculosisclinical isolates and for further defining the mode of action of this important tuberculosis drug.


2017 ◽  
Vol 61 (4) ◽  
Author(s):  
Adebisi Ajileye ◽  
Nataly Alvarez ◽  
Matthias Merker ◽  
Timothy M. Walker ◽  
Suriya Akter ◽  
...  

ABSTRACT In this study, using the Hain GenoType MTBDRsl assays (versions 1 and 2), we found that some nonsynonymous and synonymous mutations in gyrA in Mycobacterium tuberculosis result in systematic false-resistance results to fluoroquinolones by preventing the binding of wild-type probes. Moreover, such mutations can prevent the binding of mutant probes designed for the identification of specific resistance mutations. Although these mutations are likely rare globally, they occur in approximately 7% of multidrug-resistant tuberculosis strains in some settings.


2014 ◽  
Vol 58 (11) ◽  
pp. 7010-7014 ◽  
Author(s):  
Yasuhiro Horita ◽  
Shinji Maeda ◽  
Yuko Kazumi ◽  
Norio Doi

ABSTRACTWe evaluated the antituberculosis (anti-TB) activity of five β-lactams alone or in combination with β-lactamase inhibitors against 41 clinical isolates ofMycobacterium tuberculosis, including multidrug-resistant and extensively drug-resistant strains. Of those, tebipenem, an oral carbapenem, showed the most potent anti-TB activity against clinical isolates, with a MIC range of 0.125 to 8 μg/ml, which is achievable in the human blood. More importantly, in the presence of clavulanate, MIC values of tebipenem declined to 2 μg/ml or less.


2016 ◽  
Vol 54 (9) ◽  
pp. 2298-2305 ◽  
Author(s):  
Ritu Singhal ◽  
Paul R. Reynolds ◽  
Jamie L. Marola ◽  
L. Elaine Epperson ◽  
Jyoti Arora ◽  
...  

Fluoroquinolones (FQs) are broad-spectrum antibiotics recommended for the treatment of multidrug-resistant tuberculosis (MDR-TB) patients. FQ resistance, caused by mutations in thegyrAandgyrBgenes ofMycobacterium tuberculosis, is increasingly reported worldwide; however, information on mutations occurring in strains from the Indian subcontinent is scarce. Hence, in this study, we aimed to characterize mutations in thegyrAandgyrBgenes of acid-fast bacillus (AFB) smear-positive sediments or ofM. tuberculosisisolates from AFB smear-negative samples from patients in India suspected of having MDR-TB. A total of 152 samples from patients suspected of having MDR-TB were included in the study. One hundred forty-six strains detected in these samples were characterized by sequencing of thegyrAandgyrBgenes. The extracted DNA was subjected to successive amplifications using a nested PCR protocol, followed by sequencing. A total of 27 mutations were observed in thegyrAgenes of 25 strains, while no mutations were observed in thegyrBgenes. The most common mutations occurred at amino acid position 94 (13/27 [48.1%]); of these, the D94G mutation was the most prevalent. ThegyrAmutations were significantly associated with patients with rifampin (RIF)-resistant TB. Heterozygosity was seen in 4/27 (14.8%) mutations, suggesting the occurrence of mixed populations with different antimicrobial susceptibilities. A high rate of FQ-resistant mutations (17.1%) was obtained among the isolates of TB patients suspected of having MDR-TB. These observations emphasize the need for accurate and rapid molecular tests for the detection of FQ-resistant mutations at the time of MDR-TB diagnosis.


2014 ◽  
Vol 58 (6) ◽  
pp. 3270-3275 ◽  
Author(s):  
Brandon Eilertson ◽  
Fernanda Maruri ◽  
Amondrea Blackman ◽  
Miguel Herrera ◽  
David C. Samuels ◽  
...  

ABSTRACTHeteroresistance is the coexistence of populations with differing nucleotides at a drug resistance locus within a sample of organisms. Although Sanger sequencing is the gold standard for sequencing, it may be less sensitive than deep sequencing for detecting fluoroquinolone heteroresistance inMycobacterium tuberculosis. Twenty-seven fluoroquinolone monoresistant and 11 fluoroquinolone-susceptibleM. tuberculosisisolates were analyzed by Sanger and Illumina deep sequencing. Individual sequencing reads were analyzed to detect heteroresistance in thegyrAandgyrBgenes. Heteroresistance to fluoroquinolones was identified in 10/26 (38%) phenotypically fluoroquinolone-resistant samples and 0/11 (P= 0.02) fluoroquinolone-susceptible controls. One resistant sample was excluded because of contamination with the laboratory strainM. tuberculosisH37Rv. Sanger sequencing revealed resistance-conferring mutations in 15 isolates, while deep sequencing revealed mutations in 20 isolates. Isolates with fluoroquinolone resistance-conferring mutations by Sanger sequencing all had at least those same mutations identified by deep sequencing. By deep sequencing, 10 isolates had a single fixed (defined as >95% frequency) mutation, while 10 were heteroresistant, 5 of which had a single unfixed (defined as <95% frequency) mutation and 5 had multiple unfixed mutations. Illumina deep sequencing identified a higher proportion of fluoroquinolone-resistantM. tuberculosisisolates with heteroresistance than did Sanger sequencing. The heteroresistant isolates frequently demonstrated multiple mutations, but resistant isolates with fixed mutations each had only a single mutation.


Sign in / Sign up

Export Citation Format

Share Document