scholarly journals Genotypic Analysis of Genes Associated with Independent Resistance and Cross-Resistance to Isoniazid and Ethionamide in Mycobacterium tuberculosis Clinical Isolates

2015 ◽  
Vol 59 (12) ◽  
pp. 7805-7810 ◽  
Author(s):  
Johana Rueda ◽  
Teresa Realpe ◽  
Gloria Isabel Mejia ◽  
Elsa Zapata ◽  
Juan Carlos Rozo ◽  
...  

ABSTRACTEthionamide (ETH) is an antibiotic used for the treatment of multidrug-resistant (MDR) tuberculosis (TB) (MDR-TB), and its use may be limited with the emergence of resistance in theMycobacterium tuberculosispopulation. ETH resistance inM. tuberculosisis phenomenon independent or cross related when accompanied with isoniazid (INH) resistance. In most cases, resistance to INH and ETH is explained by mutations in theinhApromoter and in the following genes:katG,ethA,ethR,mshA,ndh, andinhA. We sequenced the above genes in 64M. tuberculosisisolates (n= 57 ETH-resistant MDR-TB isolates;n= 3 ETH-susceptible MDR-TB isolates; andn= 4 fully susceptible isolates). Each isolate was tested for susceptibility to first- and second-line drugs using the agar proportion method. Mutations were observed in ETH-resistant MDR-TB isolates at the following rates: 100% inkatG, 72% inethA, 45.6% inmshA, 8.7% inndh, and 33.3% ininhAor its promoter. Of the three ETH-susceptible MDR-TB isolates, all showed mutations inkatG; one had a mutation inethA, and another, inmshAandinhA. Finally, of the four fully susceptible isolates, two showed no detectable mutation in the studied genes, and two had mutations inmshAgene unrelated to the resistance. Mutations not previously reported were found in theethA,mshA,katG, andndhgenes. The concordance between the phenotypic susceptibility testing to INH and ETH and the sequencing was 1 and 0.45, respectively. Among isolates exhibiting INH resistance, the high frequency of independent resistance and cross-resistance with ETH in theM. tuberculosisisolates suggests the need to confirm the susceptibility to ETH before considering it in the treatment of patients with MDR-TB.

2018 ◽  
Vol 62 (8) ◽  
Author(s):  
Zhaojing Zong ◽  
Wei Jing ◽  
Jin Shi ◽  
Shu'an Wen ◽  
Tingting Zhang ◽  
...  

ABSTRACT Oxazolidinones are efficacious in treating mycobacterial infections, including tuberculosis (TB) caused by drug-resistant Mycobacterium tuberculosis. In this study, we compared the in vitro activities and MIC distributions of delpazolid, a novel oxazolidinone, and linezolid against multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB) in China. Additionally, genetic mutations in 23S rRNA, rplC, and rplD genes were analyzed to reveal potential mechanisms underlying the observed oxazolidinone resistance. A total of 240 M. tuberculosis isolates were included in this study, including 120 MDR-TB isolates and 120 XDR-TB isolates. Overall, linezolid and delpazolid MIC90 values for M. tuberculosis isolates were 0.25 mg/liter and 0.5 mg/liter, respectively. Based on visual inspection, we tentatively set epidemiological cutoff (ECOFF) values for MIC determinations for linezolid and delpazolid at 1.0 mg/liter and 2.0 mg/liter, respectively. Although no significant difference in resistance rates was observed between linezolid and delpazolid among XDR-TB isolates (P > 0.05), statistical analysis revealed a significantly greater proportion of linezolid-resistant isolates than delpazolid-resistant isolates within the MDR-TB group (P = 0.036). Seven (53.85%) of 13 linezolid-resistant isolates were found to harbor mutations within the three target genes. Additionally, 1 isolate exhibited an amino acid substitution (Arg126His) within the protein encoded by rplD that contributed to high-level resistance to linezolid (MIC of >16 mg/liter), compared to a delpazolid MIC of 0.25. In conclusion, in vitro susceptibility testing revealed that delpazolid antibacterial activity was comparable to that of linezolid. A novel mutation within rplD that endowed M. tuberculosis with linezolid, but not delpazolid, resistance was identified.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Noura M. Al-Mutairi ◽  
Suhail Ahmad ◽  
Eiman Mokaddas

AbstractMolecular methods detect genetic mutations associated with drug resistance. This study detected resistance-conferring mutations in gyrA/gyrB for fluoroquinolones and rrs/eis genes for second-line injectable drugs (SLIDs) among multidrug-resistant Mycobacterium tuberculosis (MDR-TB) isolates in Kuwait. Fifty pansusceptible M. tuberculosis and 102 MDR-TB strains were tested. Phenotypic susceptibility testing was performed by MGIT 960 system using SIRE drug kit. GenoType MTBDRsl version 1 (gMTBDRslv1) and GenoType MTBDRsl version 2 (gMTBDRslv2) tests were used for mutation detection. Results were validated by PCR-sequencing of respective genes. Fingerprinting was performed by spoligotyping. No mutations were detected in pansusceptible isolates. gMTBDRslv1 detected gyrA mutations in 12 and rrs mutations in 8 MDR-TB isolates. gMTBDRsl2 additionally detected gyrB mutations in 2 and eis mutation in 1 isolate. Mutations in both gyrA/gyrB and rrs/eis were not detected. gMTBDRslv1 also detected ethambutol resistance-conferring embB mutations in 59 isolates. Although XDR-TB was not detected, frequency of resistance-conferring mutations for fluoroquinolones or SLIDs was significantly higher among isolates collected during 2013–2019 versus 2006–2012. Application of both tests is warranted for proper management of MDR-TB patients in Kuwait as gMTBDRslv2 detected resistance to fluoroquinolones and/or SLIDs in 3 additional isolates while gMTBDRslv1 additionally detected resistance to ethambutol in 58% of MDR-TB isolates.


2017 ◽  
Vol 8 (1) ◽  
pp. 33-43 ◽  
Author(s):  
Aleksandr I. Ilin ◽  
Murat E. Kulmanov ◽  
Ilya S. Korotetskiy ◽  
Marina V. Lankina ◽  
Gulshara K. Akhmetova ◽  
...  

Emergence of multidrug resistant strains ofMycobacterium tuberculosis(MDR-TB) threatens humanity. This problem was complicated by the crisis in development of new anti-tuberculosis antibiotics. Induced reversion of drug resistance seems promising to overcome the problem. Successful clinical trial of a new anti-tuberculosis nanomolecular complex FS-1 has demonstrated prospectively of this approach in combating MDR-TB. Several clinical MDR-TB cultures were isolated from sputum samples prior and in the process of the clinical trial. Every isolate was tested for susceptibility to antibiotics and then they were sequenced for comparative genomics. It was found that the treatment with FS-1 caused an increase in the number of antibiotic susceptible strains among Mtb isolates that was associated with a general increase of genetic heterogeneity of the isolates. Observed impairing of phthiocerol dimycocerosate biosynthesis by disruptive mutations inppsACDsubunits indicated a possible virulence remission for the sake of persistence. It was hypothesized that the FS-1 treatment eradicated the most drug resistant Mtb variants from the population by aggravating the fitness cost of drug resistance mutations. Analysis of distribution of these mutations in the global Mtb population revealed that many of them were incompatible with each other and dependent on allelic states of many other polymorphic loci. The latter discovery may explain the negative correlation between the genetic heterogeneity of the population and the level of drug tolerance. To the best of our knowledge, this work was the first experimental confirmation of the drug induced antibiotic resistance reversion by the induced synergy mechanism that previously was predicted theoretically.


2016 ◽  
Vol 60 (4) ◽  
pp. 2090-2096 ◽  
Author(s):  
Jung-Yien Chien ◽  
Wei-Yih Chiu ◽  
Shun-Tien Chien ◽  
Chia-Jung Chiang ◽  
Chong-Jen Yu ◽  
...  

ABSTRACTIn order to correlate the mutations inside the entiregyrAandgyrBgenes with the level of resistance to ofloxacin (OFX) and moxifloxacin (MFX) in isolates of multidrug-resistantMycobacterium tuberculosis(MDR-TB), a total of 111 isolates were categorized into OFX-susceptible (MIC, ≤2 μg/ml) and low-level (MIC, 4 to 8 μg/ml) and high-level (MIC, ≥16 μg/ml) OFX-resistant isolates and MFX-susceptible (MIC, ≤0.5 μg/ml) and low-level (MIC, 1 to 2 μg/ml) and high-level (MIC, ≥4 μg/ml) MFX-resistant isolates. Resistance-associated mutations inside thegyrAgene were found in 30.2% of OFX-susceptible and 72.5% and 72.2% of low-level and high-level OFX-resistant isolates and in 28.6% of MFX-susceptible and 58.1% and 83.9% of low-level and high-level MFX-resistant isolates. Compared with OFX-susceptible isolates, low-level and high-level OFX-resistant isolates had a significantly higher prevalence of mutations atgyrAcodons 88 to 94 (17.0%, 65.0%, and 72.2%, respectively;P< 0.001) and a higher prevalence of thegyrBG512R mutation (0.0%, 2.5%, and 16.7%, respectively;P= 0.006). Similarly, compared with MFX-susceptible isolates, low-level and high-level MFX-resistant isolates had a significantly higher prevalence of mutations atgyrAcodons 88 to 94 (14.3%, 51.6%, and 80.6%, respectively;P< 0.001) as well as a higher prevalence of thegyrBG512R mutation (0.0%, 0.0%, and 12.9%, respectively;P= 0.011). D94G and D94N mutations ingyrAand the G512R mutation ingyrBwere correlated with high-level MFX resistance, while the D94A mutation was associated with low-level MFX resistance. The prevalence of mutations atgyrAcodons 88 to 94 and thegyrBG512R mutation were higher among fluoroquinolone (FQ)-susceptible East Asian (Beijing) and Indo-Oceanic strains than they were among Euro-American strains, implying that molecular techniques to detect FQ resistance may be less specific in areas with a high prevalence of East Asian (Beijing) and Indo-Oceanic strains.


2019 ◽  
Vol 57 (8) ◽  
Author(s):  
Kingsley King-Gee Tam ◽  
Kenneth Siu-Sing Leung ◽  
Gilman Kit-Hang Siu ◽  
Kwok-Chiu Chang ◽  
Samson Sai-Yin Wong ◽  
...  

ABSTRACT An in-house-developed pncA sequencing assay for analysis of pyrazinamide (PZA) resistance was evaluated using 162 archived Mycobacterium tuberculosis complex (MTBC) isolates with phenotypic PZA susceptibility profiles that were well defined by analysis of Bactec MGIT 960 PZA kit and PZase activity data. Preliminary results showed 100% concordance between pncA sequencing and phenotypic PZA drug susceptibility test (DST) results among archived isolates. Also, 637 respiratory specimens were prospectively collected, and 158 were reported as MTBC positive by the Abbott Realtime MTB assay (96.3% sensitivity [95% confidence interval {CI}: 92.2% to 98.7%]; 100% specificity [95% CI: 99.2% to 100.0%]). Genotypic and phenotypic PZA resistance profiles of these 158 MTBC-positive specimens were analyzed by pncA sequencing and Bactec MGIT 960 PZA kit, respectively. For analysis of PZA resistance, pncA sequencing detected pncA mutations in 5/5 (100%) phenotypic PZA-resistant respiratory specimens within 4 working days. No pncA mutations were detected among PZA-susceptible specimens. Combining archived isolates with prospective specimens, 27 were identified as phenotypic PZA resistant with pncA mutation. Among these 27 samples, 6/27 (22.2%) phenotypic PZA-resistant strains carried novel pncA mutations without rpsA and panD mutations. These included 5 with mutations (a deletion [Del] at 383T [Del383T], Del 380 to 390, insertion of A [A Ins] at position 127, A Ins at position 407, and G Ins at position 508) in pncA structural genes and 1 with a mutation (T-12C) at the pncA promoter region. All six of these strains had no or reduced PZase activities, indicating that the novel mutations might confer PZA resistance. Additionally, 25/27 phenotypic PZA-resistant strains were confirmed multidrug-resistant tuberculosis (MDR-TB) strains. As PZA is commonly used in MDR-TB treatment regimens, direct pncA sequencing will rapidly detect PZA resistance and facilitate judicious use of PZA in treating PZA-susceptible MDR-TB.


2012 ◽  
Vol 56 (6) ◽  
pp. 2831-2836 ◽  
Author(s):  
Ajay Poudel ◽  
Chie Nakajima ◽  
Yukari Fukushima ◽  
Haruka Suzuki ◽  
Basu Dev Pandey ◽  
...  

ABSTRACTDespite the fact that Nepal is one of the first countries globally to introduce multidrug-resistant tuberculosis (MDR-TB) case management, the number of MDR-TB cases is continuing to rise in Nepal. Rapid molecular tests applicable in this setting to identify resistant organisms would be an effective tool in reversing this trend. To develop such tools, information about the frequency and distribution of mutations that are associated with phenotypic drug resistance inMycobacterium tuberculosisis required. In the present study, we investigated the prevalence of mutations inrpoBandkatGgenes and theinhApromoter region in 158M. tuberculosisisolates (109 phenotypically MDR and 49 non-MDR isolates collected in Nepal) by DNA sequencing. Mutations affecting the 81-bp rifampin (RIF) resistance-determining region (RRDR) ofrpoBwere identified in 106 of 109 (97.3%) RIF-resistant isolates. Codons 531, 526, and 516 were the most commonly affected, at percentages of 58.7, 15.6, and 15.6%, respectively. Of 113 isoniazid (INH)-resistant isolates, 99 (87.6%) had mutations in thekatGgene, with Ser315Thr being the most prevalent (81.4%) substitution. Mutations in theinhApromoter region were detected in 14 (12.4%) INH-resistant isolates. The results from this study provide an overview of the current situation of RIF and INH resistance inM. tuberculosisin Nepal and can serve as a basis for developing or improving rapid molecular tests to monitor drug-resistant strains in this country.


2015 ◽  
Vol 53 (12) ◽  
pp. 3779-3783 ◽  
Author(s):  
Nontuthuko E. Maningi ◽  
Luke T. Daum ◽  
John D. Rodriguez ◽  
Matsie Mphahlele ◽  
Remco P. H. Peters ◽  
...  

The technical limitations of common tests used for detecting pyrazinamide (PZA) resistance inMycobacterium tuberculosisisolates pose challenges for comprehensive and accurate descriptions of drug resistance in patients with multidrug-resistant tuberculosis (MDR-TB). In this study, a 606-bp fragment (comprising thepncAcoding region plus the promoter) was sequenced using Ion Torrent next-generation sequencing (NGS) to detect associated PZA resistance mutations in 88 recultured MDR-TB isolates from an archived series collected in 2001. These 88 isolates were previously Sanger sequenced, with 55 (61%) designated as carrying the wild-typepncAgene and 33 (37%) showing mutations. PZA susceptibility of the isolates was also determined using the Bactec 460 TB system and the Wayne test. In this study, isolates were recultured and susceptibility testing was performed in Bactec 960 MGIT. Concordance between NGS and MGIT results was 93% (n= 88), and concordance values between the Bactec 460, the Wayne test, orpncAgene Sanger sequencing and NGS results were 82% (n= 88), 83% (n= 88), and 89% (n= 88), respectively. NGS confirmed the majority ofpncAmutations detected by Sanger sequencing but revealed several new and mixed-strain mutations that resolved discordancy in other phenotypic results. Importantly, in 53% (18/34) of these isolates,pncAmutations were located in the 151 to 360 region and warrant further exploration. In these isolates, with their known resistance to rifampin, NGS ofpncAimproved PZA resistance detection sensitivity to 97% and specificity to 94% using NGS as the gold standard and helped to resolve discordant results from conventional methodologies.


2014 ◽  
Vol 59 (1) ◽  
pp. 444-449 ◽  
Author(s):  
Analise Z. Reeves ◽  
Patricia J. Campbell ◽  
Melisa J. Willby ◽  
James E. Posey

ABSTRACTAs the prevalence of multidrug-resistant and extensively drug-resistant tuberculosis strains continues to rise, so does the need to develop accurate and rapid molecular tests to complement time-consuming growth-based drug susceptibility testing. Performance of molecular methods relies on the association of specific mutations with phenotypic drug resistance and while considerable progress has been made for resistance detection of first-line antituberculosis drugs, rapid detection of resistance for second-line drugs lags behind. TherrsA1401G allele is considered a strong predictor of cross-resistance between the three second-line injectable drugs, capreomycin (CAP), kanamycin, and amikacin. However, discordance is often observed between therrsA1401G mutation and CAP resistance, with up to 40% ofrrsA1401G mutants being classified as CAP susceptible. We measured the MICs to CAP in 53 clinical isolates harboring therrsA1401G mutation and found that the CAP MICs ranged from 8 μg/ml to 40 μg/ml. These results were drastically different from engineered A1401G mutants generated in isogenicMycobacterium tuberculosis, which exclusively exhibited high-level CAP MICs of 40 μg/ml. These data support the results of prior studies, which suggest that the critical concentration of CAP (10 μg/ml) used to determine resistance by indirect agar proportion may be too high to detect all CAP-resistant strains and suggest that a larger percentage of resistant isolates could be identified by lowering the critical concentration. These data also suggest that differences in resistance levels among clinical isolates are possibly due to second site or compensatory mutations located elsewhere in the genome.


2014 ◽  
Vol 58 (7) ◽  
pp. 4222-4223 ◽  
Author(s):  
Jim Werngren ◽  
Maria Wijkander ◽  
Nasrin Perskvist ◽  
V. Balasubramanian ◽  
Vasan K. Sambandamurthy ◽  
...  

ABSTRACTThe MIC of the novel antituberculosis (anti-TB) drug AZD5847 was determined against 146 clinical isolates from diverse geographical regions, including eastern Europe, North America, Africa, and Asia, using the automated Bactec Mycobacterial Growth Indicator Tube (MGIT) 960 system. These isolates originated from specimen sources such as sputum, bronchial alveolar lavage fluid, pleural fluid, abscess material, lung biopsies, and feces. The overall MIC90was 1.0 mg/liter (range, 0.125 to 4 mg/liter). The MICs of AZD5847 for isolates ofMycobacterium tuberculosiswere similar among drug-sensitive strains, multidrug-resistant (MDR) strains, and extensively drug resistant (XDR) strains. The goodin vitroactivity of AZD5847 againstM. tuberculosisand the lack of cross-resistance make this agent a promising anti-TB drug candidate.


Sign in / Sign up

Export Citation Format

Share Document