scholarly journals Determination of robust ocular pharmacokinetic parameters in serum and vitreous humor of albino rabbits following systemic administration of ciprofloxacin from sparse data sets by using IT2S, a population pharmacokinetic modeling program

1995 ◽  
Vol 39 (8) ◽  
pp. 1683-1687 ◽  
Author(s):  
G. L. Drusano ◽  
W. Liu ◽  
R. Perkins ◽  
A. Madu ◽  
C. Madu ◽  
...  
2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Alexander Kensert ◽  
Jonathan Alvarsson ◽  
Ulf Norinder ◽  
Ola Spjuth

IUCrJ ◽  
2015 ◽  
Vol 2 (1) ◽  
pp. 29-34 ◽  
Author(s):  
Kartik Ayyer ◽  
Hugh T. Philipp ◽  
Mark W. Tate ◽  
Jennifer L. Wierman ◽  
Veit Elser ◽  
...  

X-ray serial microcrystallography involves the collection and merging of frames of diffraction data from randomly oriented protein microcrystals. The number of diffracted X-rays in each frame is limited by radiation damage, and this number decreases with crystal size. The data in the frame are said to be sparse if too few X-rays are collected to determine the orientation of the microcrystal. It is commonly assumed that sparse crystal diffraction frames cannot be merged, thereby setting a lower limit to the size of microcrystals that may be merged with a given source fluence. TheEMCalgorithm [Loh & Elser (2009),Phys. Rev. E,80, 026705] has previously been applied to reconstruct structures from sparse noncrystalline data of objects with unknown orientations [Philippet al.(2012),Opt. Express,20, 13129–13137; Ayyeret al.(2014),Opt. Express,22, 2403–2413]. Here, it is shown that sparse data which cannot be oriented on a per-frame basis can be used effectively as crystallographic data. As a proof-of-principle, reconstruction of the three-dimensional diffraction intensity using sparse data frames from a 1.35 kDa molecule crystal is demonstrated. The results suggest that serial microcrystallography is, in principle, not limited by the fluence of the X-ray source, and collection of complete data sets should be feasible at, for instance, storage-ring X-ray sources.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3492-3492
Author(s):  
Myungshin Oh ◽  
Sven Björkman ◽  
Phillip Schroth ◽  
Sandor Fritsch ◽  
Peter Collins ◽  
...  

Abstract Abstract 3492 Poster Board III-429 Introduction The objective of this analysis was to characterize the population pharmacokinetic (PK) model of ADVATE® (Antihemophilic Factor (Recombinant), Plasma/Albumin-Free Method) in hemophilia A patients. This included estimation of typical population pharmacokinetic parameters and inter-individual and residual variability and identification of covariates that are significant predictors of variability in a pooled population of children and adults. Patients and Methods Plasma FVIII activity PK data were collected for 3 ADVATE® clinical trials in previously treated patients: 184 full PK data sets for 100 adults/adolescents, aged 10 to 65 years, and from 52 reduced sample PK data sets for 52 children, aged 1 to 6 years. Population PK analysis was conducted using non-linear mixed effects modeling with the first-order integral approximation method in SAS® software (NLMIXED procedure). A two-compartment model was used as the base model and the influence of age and weight were explored. Results Two-compartment PK models with additive plus proportional residual variability model and exponential inter-individual variability model adequately described the data. Clearance (CL) is significantly correlated with age and body weight and central volume of distribution (V1) is also related with body weight. The estimated population PK parameters were (mean parameter, (inter-individual variability %)): CL (2.92 mL/kg·h, 22%), V1 (0.46 dL/kg, 5.2%), peripheral volume V2 (0.09 dL/kg) and inter-compartmental clearance Q (2.07 mL/ kg·h). Conclusions A population PK model that describes the combined PK data from adults and pediatric studies has been constructed. A significant portion of inter-individual variability in both volume and clearance can be explained by subject weight. An additional smaller effect of age on clearance but not volume was observed. A population PK model for Factor VIII could provide the clinician with advantages in designing a patient specific treatment regimen. It could provide more relevant guidance in individual patient pharmacokinetics than just incremental recovery without the burden of a full PK assessment of the patient. Disclosures: Oh: Baxter: Employment. Off Label Use: Prophylaxis is not indicated in the US. Björkman:Baxter: Consultancy; Octapharma: Consultancy. Schroth:Baxter: Employment. Fritsch:Baxter: Employment. Collins:Bayer: Consultancy; Novo Nordisk: Consultancy; Baxter: Consultancy. Fischer:Bayer: Consultancy; Wyeth: Consultancy; Baxter: Consultancy. Blanchette:Bayer: Consultancy; Baxter: Consultancy. Casey:Baxter: Employment. Spotts:Baxter: Employment. Ewenstein:Baxter: Employment.


Sign in / Sign up

Export Citation Format

Share Document