scholarly journals Nucleotide sequence analysis of a gene from Burkholderia (Pseudomonas) cepacia encoding an outer membrane lipoprotein involved in multiple antibiotic resistance.

1996 ◽  
Vol 40 (2) ◽  
pp. 307-313 ◽  
Author(s):  
J L Burns ◽  
C D Wadsworth ◽  
J J Barry ◽  
C P Goodall

Antibiotic-resistant Burkholderia (Pseudomonas) cepacia is an important etiologic agent of nosocomial and cystic fibrosis infections. The primary resistance mechanism which has been reported is decreased outer membrane permeability. We previously reported the cloning and characterization of a chloramphenicol resistance determinant from an isolate of B. cepacia from a patient with cystic fibrosis that resulted in decreased drug accumulation. In the present studies we subcloned and sequenced the resistance determinant and identified gene products related to decreased drug accumulation. Additional drug resistances encoded by the determinant include resistances to trimethoprim and ciprofloxacin. Sequence analysis of a 3.4-kb subcloned fragment identified one complete and one partial open reading frame which are homologous with two of three components of a potential antibiotic efflux operon from Pseudomonas aeruginosa (mexA-mexB-oprM). On the basis of sequence data, outer membrane protein analysis, protein expression systems, and a lipoprotein labelling assay, the complete open reading frame encodes an outer membrane lipoprotein which is homologous with OprM. The partial open reading frame shows homology at the protein level with the C terminus of the protein product of mexB. DNA hybridization studies demonstrated homology of an internal mexA probe with a larger subcloned fragment from B. cepacia. The finding of multiple antibiotic resistance in B. cepacia as a result of an antibiotic efflux pump is surprising because it has long been believed that resistance in this organism is caused by impermeability to antibiotics.

2004 ◽  
Vol 48 (4) ◽  
pp. 1151-1158 ◽  
Author(s):  
Ryuichi Nakano ◽  
Ryoichi Okamoto ◽  
Yumiko Nakano ◽  
Kenichi Kaneko ◽  
Naohiro Okitsu ◽  
...  

ABSTRACT A clinical isolate of Escherichia coli from a patient in Japan, isolate KU6400, was found to produce a plasmid-encoded β-lactamase that conferred resistance to extended-spectrum cephalosporins and cephamycins. Resistance arising from production of a β-lactamase could be transferred by either conjugation or transformation with plasmid pKU601 into E. coli ML4947. The substrate and inhibition profiles of this enzyme resembled those of the AmpC β-lactamase. The resistance gene of pKU601, which was cloned and expressed in E. coli, proved to contain an open reading frame showing 99.8% DNA sequence identity with the ampC gene of Citrobacter freundii GC3. DNA sequence analysis also identified a gene upstream of ampC whose sequence was 99.0% identical to the ampR gene from C. freundii GC3. In addition, a fumarate operon (frdABCD) and an outer membrane lipoprotein (blc) surrounding the ampR-ampC genes in C. freundii were identified, and insertion sequence (IS26) elements were observed on both sides of the sequences identified (forming an IS26 composite transposon); these results confirm the evidence of the translocation of a β-lactamase-associated gene region from the chromosome to a plasmid. Finally, we describe a novel plasmid-encoded AmpC β-lactamase, CFE-1, with an ampR gene derived from C. freundii.


1999 ◽  
Vol 67 (11) ◽  
pp. 5621-5625 ◽  
Author(s):  
Koichi Sawada ◽  
Susumu Kokeguchi ◽  
Hiroshi Hongyo ◽  
Satoko Sawada ◽  
Manabu Miyamoto ◽  
...  

ABSTRACT Subtractive hybridization was employed to isolate specific genes from virulent Porphyromonas gingivalis strains that are possibly related to abscess formation. The genomic DNA from the virulent strain P. gingivalis W83 was subtracted with DNA from the avirulent strain ATCC 33277. Three clones unique to strain W83 were isolated and sequenced. The cloned DNA fragments were 885, 369, and 132 bp and had slight homology with only Bacillus stearothermophilus IS5377, which is a putative transposase. The regions flanking the cloned DNA fragments were isolated and sequenced, and the gene structure around the clones was revealed. These three clones were located side-by-side in a gene reported as an outer membrane protein. The three clones interrupt the open reading frame of the outer membrane protein gene. This inserted DNA, consisting of three isolated clones, was designated IS1598, which was 1,396 bp (i.e., a 1,158-bp open reading frame) in length and was flanked by 16-bp terminal inverted repeats and a 9-bp duplicated target sequence. IS1598 was detected inP. gingivalis W83, W50, and FDC 381 by Southern hybridization. All three P. gingivalis strains have been shown to possess abscess-forming ability in animal models. However, IS1598 was not detected in avirulent strains of P. gingivalis, including ATCC 33277. The IS1598 may interrupt the synthesis of the outer membrane protein, resulting in changes in the structure of the bacterial outer membrane. The IS1598 isolated in this study is a novel insertion element which might be a specific marker for virulent P. gingivalisstrains.


Sign in / Sign up

Export Citation Format

Share Document