antibiotic efflux
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 18)

H-INDEX

26
(FIVE YEARS 3)

2021 ◽  
Vol 17 (12) ◽  
pp. e1010144
Author(s):  
Sweta Roy ◽  
Ali Adem Bahar ◽  
Huan Gu ◽  
Shikha Nangia ◽  
Karin Sauer ◽  
...  

Persistent bacterial infections do not respond to current antibiotic treatment and thus present a great medical challenge. These conditions have been linked to the formation of dormant subpopulations of bacteria, known as persister cells, that are growth-arrested and highly tolerant to conventional antibiotics. Here, we report a new strategy of persister control and demonstrate that minocycline, an amphiphilic antibiotic that does not require active transport to penetrate bacterial membranes, is effective in killing Escherichia coli persister cells [by 70.8 ± 5.9% (0.53 log) at 100 μg/mL], while being ineffective in killing normal cells. Further mechanistic studies revealed that persister cells have reduced drug efflux and accumulate more minocycline than normal cells, leading to effective killing of this dormant subpopulation upon wake-up. Consistently, eravacycline, which also targets the ribosome but has a stronger binding affinity than minocycline, kills persister cells by 3 logs when treated at 100 μg/mL. In summary, the findings of this study reveal that while dormancy is a well-known cause of antibiotic tolerance, it also provides an Achilles’ heel for controlling persister cells by leveraging dormancy associated reduction of drug efflux.


Antibiotics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1117
Author(s):  
Anne Davin-Regli ◽  
Jean-Marie Pages ◽  
Aurélie Ferrand

Antibiotic efflux is a mechanism that is well-documented in the phenotype of multidrug resistance in bacteria. Efflux is considered as an early facilitating mechanism in the bacterial adaptation face to the concentration of antibiotics at the infectious site, which is involved in the acquirement of complementary efficient mechanisms, such as enzymatic resistance or target mutation. Various efflux pumps have been described in the Gram-negative bacteria most often encountered in infectious diseases and, in healthcare-associated infections. Some are more often involved than others and expel virtually all families of antibiotics and antibacterials. Numerous studies report the contribution of these pumps in resistant strains previously identified from their phenotypes. The authors characterize the pumps involved, the facilitating antibiotics and those mainly concerned by the efflux. However, today no study describes a process for the real-time quantification of efflux in resistant clinical strains. It is currently necessary to have at hospital level a reliable and easy method to quantify the efflux in routine and contribute to a rational choice of antibiotics. This review provides a recent overview of the prevalence of the main efflux pumps observed in clinical practice and provides an idea of the prevalence of this mechanism in the multidrug resistant Gram-negative bacteria. The development of a routine diagnostic tool is now an emergency need for the proper application of current recommendations regarding a rational use of antibiotics.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nicholas G. Housden ◽  
Melissa N. Webby ◽  
Edward D. Lowe ◽  
Tarick J. El-Baba ◽  
Renata Kaminska ◽  
...  

AbstractBacteria often secrete diffusible protein toxins (bacteriocins) to kill bystander cells during interbacterial competition. Here, we use biochemical, biophysical and structural analyses to show how a bacteriocin exploits TolC, a major outer-membrane antibiotic efflux channel in Gram-negative bacteria, to transport itself across the outer membrane of target cells. Klebicin C (KlebC), a rRNase toxin produced by Klebsiella pneumoniae, binds TolC of a related species (K. quasipneumoniae) with high affinity through an N-terminal, elongated helical hairpin domain common amongst bacteriocins. The KlebC helical hairpin opens like a switchblade to bind TolC. A cryo-EM structure of this partially translocated state, at 3.1 Å resolution, reveals that KlebC associates along the length of the TolC channel. Thereafter, the unstructured N-terminus of KlebC protrudes beyond the TolC iris, presenting a TonB-box sequence to the periplasm. Association with proton-motive force-linked TonB in the inner membrane drives toxin import through the channel. Finally, we demonstrate that KlebC binding to TolC blocks drug efflux from bacteria. Our results indicate that TolC, in addition to its known role in antibiotic export, can function as a protein import channel for bacteriocins.


2021 ◽  
Author(s):  
Hyun Jae Cho ◽  
Rajeev Misra

Mutations are one of the common means by which bacteria acquire resistance to antibiotics. In an Escherichia coli mutant lacking major antibiotic efflux pumps AcrAB and AcrEF, mutations can activate alternative pathways that lead to increased antibiotic resistance. In this work, we isolated and characterized compensatory mutations of this nature mapping in four different regulatory genes—baeS, crp, hns, or rpoB. The gain-of-function mutations in baeS constitutively activated the BaeSR two-component regulatory system to increase the expression of the MdtABC efflux pump. The loss-of-function mutations in crp and hns caused de-repression of an operon coding for the MdtEF efflux pump. Interestingly, despite the dependence of rpoB missense mutations on MdtABC for their antibiotic resistance phenotype, neither the expression of the mdtABCDbaeSR operon nor that of other known antibiotic efflux pumps went up. Instead, the RNA-seq data revealed a gene expression profile resembling that of a “stringent” RNA polymerase where protein and DNA biosynthesis pathways were down-regulated, but pathways to combat various stresses were up-regulated. Some of these activated stress pathways are also controlled by the general stress sigma factor, RpoS. The data presented here also show that compensatory mutations can act synergistically to further increase antibiotic resistance to a level similar to the efflux pump-proficient parental strain. Together, the findings highlight a remarkable genetic ability of bacteria to circumvent antibiotic assault even in the absence of a major intrinsic antibiotic resistance mechanism. Importance Antibiotic resistance among bacterial pathogens is a chronic health concern. Bacteria possess or acquire various mechanisms of antibiotic resistance, and chief among them is the ability to accumulate beneficial mutations that often alter antibiotic targets. Here we explored E. coli’s ability to amass mutations in a background devoid of a major, constitutively expressed efflux pump and identified mutations in several regulatory genes that confer resistance by activating specific or pleiotropic mechanisms.


Author(s):  
Elisa Rampacci ◽  
Maria Luisa Marenzoni ◽  
Rolando Cannalire ◽  
Donatella Pietrella ◽  
Stefano Sabatini ◽  
...  

Abstract Background This study introduces a newly created strain (Rhodococcus equiEtBr25) by exposing R. equi ATCC 33701 to ethidium bromide (EtBr), a substrate for MDR transporters. Such an approach allowed us to investigate the resulting phenotype and genetic mechanisms underlying the efflux-mediated resistance in R. equi. Methods R. equi ATCC 33701 was stimulated with increasing concentrations of EtBr. The antimicrobial susceptibility of the parental strain and R. equiEtBr25 was investigated in the presence/absence of efflux pump inhibitors (EPIs). EtBr efflux was evaluated by EtBr-agar method and flow cytometry. The presence of efflux pump genes was determined by conventional PCR before to quantify the expression of 30 genes coding for membrane transporters by qPCR. The presence of erm(46) and mutations in 23S rRNA, and gyrA/gyrB was assessed by PCR and DNA sequencing to exclude the occurrence of resistance mechanisms other than efflux. Results R. equi EtBr25 showed an increased EtBr efflux. Against this strain, the activity of EtBr, azithromycin and ciprofloxacin was more affected than that of rifampicin and azithromycin/rifampicin combinations. Resistances were reversed by combining the antimicrobials with EPIs. Gene expression analysis detected a marked up-regulation of REQ_RS13460 encoding for a Major Facilitator Superfamily (MFS) transporter. G→A transition occurred in the transcriptional repressor tetR/acrR adjacent to REQ_RS13460. Conclusions Exposure of R. equi to EtBr unmasked an efflux-mediated defence against azithromycin and ciprofloxacin, which seemingly correlates with the overexpression of a specific MFS transporter. This genotype may mirror an insidious low-level resistance of clinically important isolates that could be countered by EPI-based therapies.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 378
Author(s):  
Inka Marie Willms ◽  
Maja Grote ◽  
Melissa Kocatürk ◽  
Lukas Singhoff ◽  
Alina Andrea Kraft ◽  
...  

Antibiotic resistance genes (ARGs) in soil are considered to represent one of the largest environmental resistomes on our planet. As these genes can potentially be disseminated among microorganisms via horizontal gene transfer (HGT) and in some cases are acquired by clinical pathogens, knowledge about their diversity, mobility and encoded resistance spectra gained increasing public attention. This knowledge offers opportunities with respect to improved risk prediction and development of strategies to tackle antibiotic resistance, and might help to direct the design of novel antibiotics, before further resistances reach hospital settings or the animal sector. Here, metagenomic libraries, which comprise genes of cultivated microorganisms, but, importantly, also those carried by the uncultured microbial majority, were screened for novel ARGs from forest and grassland soils. We detected three new beta-lactam, a so far unknown chloramphenicol, a novel fosfomycin, as well as three previously undiscovered trimethoprim resistance genes. These ARGs were derived from phylogenetically diverse soil bacteria and predicted to encode antibiotic inactivation, antibiotic efflux, or alternative variants of target enzymes. Moreover, deduced gene products show a minimum identity of ~21% to reference database entries and confer high-level resistance. This highlights the vast potential of functional metagenomics for the discovery of novel ARGs from soil ecosystems.


2021 ◽  
Vol 10 (13) ◽  
Author(s):  
A. R. Burmeister ◽  
Denish Piya ◽  
Paul E. Turner

ABSTRACT We report the genome sequence of bacteriophage U136B, which is reliant on the lipopolysaccharide and the antibiotic efflux protein TolC for infection of Escherichia coli and is a useful model for studying trade-offs and trade-ups that shape evolution. Phage U136B has a 49,233-bp genome with 87 predicted genes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Dejing Shang ◽  
Xue Han ◽  
Wanying Du ◽  
Zhiru Kou ◽  
Fengquan Jiang

Pseudomonas aeruginosa uses quorum sensing (QS) to control virulence, biofilm formation and antibiotic efflux pump expression. The development of effective small molecules targeting the QS system and biofilm formation represents a novel attractive strategy. In this present study, the effects of a series of Trp-containing peptides on the QS-regulated virulence and biofilm development of multidrug-resistant P. aeruginosa, as well as their synergistic antibacterial activity with three classes of traditional chemical antibiotics were investigated. The results showed that Trp-containing peptides at low concentrations reduced the production of QS-regulated virulence factors by downregulating the gene expression of both the las and rhl systems in the strain MRPA0108. Biofilm formation was inhibited in a concentration-dependent manner, which was associated with extracellular polysaccharide production inhibition by downregulating pelA, algD, and pslA transcription. These changes correlated with alterations in the extracellular production of pseudomonal virulence factors and swarming motility. In addition, the combination of Trp-containing peptides at low concentration with the antibiotics ceftazidime and piperacillin provided synergistic effects. Notably, L11W and L12W showed the highest synergy with ceftazidime and piperacillin. A mechanistic study demonstrated that the Trp-containing peptides, especially L12W, significantly decreased β-lactamase activity and expression of efflux pump genes OprM, MexX, and MexA, resulting in a reduction in antibiotic efflux from MRPA0108 cells and thus increasing the antibacterial activity of these antibiotics against MRPA0108.


2021 ◽  
Author(s):  
Tue Kjærgaard Nielsen ◽  
Patrick Denis Browne ◽  
Lars Hestbjerg Hansen

AbstractThe degree to which antibiotic resistance genes (ARGs) are mobilized by insertion sequence (IS) elements, plasmids, and integrons has a strong association with their likelihood to function as resistance determinants. This stems from genetic decontextualization where strong promoters often present in IS elements and integrons and the copy number effect of plasmids contribute to high expression of accessory genes. Here, we screen all complete bacterial RefSeq genomes for ARGs. The genetic contexts of detected ARGs are investigated for IS elements, integrons, plasmids, and phylogenetic dispersion. The ARG-MOB scale is proposed which indicates how mobilized detected ARGs are in bacterial genomes. Antibiotic efflux genes are rarely mobilized and it is concluded that these are often housekeeping genes that are not decontextualized to confer resistance through overexpression. Even 80% of β-lactamases have never, or very rarely, been mobilized in the 15,790 studied genomes. However, some ARGs are indeed mobilized and co-occur with IS elements, plasmids, and integrons. These results have consequences for the design and interpretation of studies screening for resistance determinants, as mobilized ARGs pose a more concrete risk to human health, especially under heterologous expression, than groups of ARGs that have only been shown to confer resistance in cloning experiments.


Sign in / Sign up

Export Citation Format

Share Document