scholarly journals Diazepam-mediated inhibition of human immunodeficiency virus type 1 expression in human brain cells.

1997 ◽  
Vol 41 (11) ◽  
pp. 2566-2569 ◽  
Author(s):  
J R Lokensgard ◽  
G Gekker ◽  
S Hu ◽  
A F Arthur ◽  
C C Chao ◽  
...  

Treatment of acutely infected human brain cell and enriched microglial cell cultures with diazepam inhibited human immunodeficiency virus type 1 (HIV-1) p24 antigen expression. Similarly, diazepam suppressed HIV-1 expression in chronically infected promonocytic (U1) cells and acutely infected monocyte-derived macrophages, and this antiviral activity was associated with decreased activation of nuclear factor kappa B.

2004 ◽  
Vol 78 (14) ◽  
pp. 7319-7328 ◽  
Author(s):  
Diane M. P. Lawrence ◽  
Linda C. Durham ◽  
Lynnae Schwartz ◽  
Pankaj Seth ◽  
Dragan Maric ◽  
...  

ABSTRACT Although cells of monocytic lineage are the primary source of human immunodeficiency virus type 1 (HIV-1) in the brain, other cell types in the central nervous system, including astrocytes, can harbor a latent or persistent HIV-1 infection. In the present study, we examined whether immature, multipotential human brain-derived progenitor cells (nestin positive) are also permissive for infection. When exposed to IIIB and NL4-3 strains of HIV-1, progenitor cells and progenitor-derived astrocytes became infected, with peak p24 levels of 100 to 500 pg/ml at 3 to 6 days postinfection. After 10 days, virus production was undetectable but could be stimulated by the addition of tumor necrosis factor alpha (TNF-α). To bypass limitations to receptor entry, we compared the fate of infection in these cell populations by transfection with the infectious HIV-1 clone, pNL4-3. Again, transfected progenitors and astrocytes produced virus for 7 days but diminished to low levels beyond 8 days posttransfection. During the nonproductive phase, TNF-α stimulated virus production from progenitors as late as 5 weeks posttransfection. Astrocytes produced 5- to 20-fold more infectious virus (27 ng of p24/106 cells) than progenitors at the peak of 3 days posttransfection. Differentiation of infected progenitors toward an astrocyte phenotype increased virus production to levels consistent with infected astrocytes, suggesting a phenotypic difference in viral replication. Using this cell culture system of multipotential human brain-derived progenitor cells, we provide evidence that progenitor cells may be a reservoir for HIV-1 in the brains of AIDS patients.


1998 ◽  
Vol 72 (1) ◽  
pp. 830-836 ◽  
Author(s):  
Hassan M. Naif ◽  
Shan Li ◽  
Mohammed Alali ◽  
Andrew Sloane ◽  
Lijun Wu ◽  
...  

ABSTRACT The chemokine receptor CCR5 and to a lesser extent CCR3 and CCR2b have been shown to serve as coreceptors for human immunodeficiency virus type 1 (HIV-1) entry into blood- or tissue-derived macrophages. Therefore, we examined the expression of the chemokine receptors CCR1, CCR2b, CCR3, CCR5, and CXCR4 as RNAs or as membrane-expressed antigens in monocytes maturing into macrophages and correlated these results with the susceptibility of macrophages to HIV-1 infection, as measured by their concentrations of extracellular p24 antigen and levels of intracellular HIV DNA by quantitative PCR. There was little change in levels of CCR1, CCR2b, and CCR5 RNAs. CCR3 RNA and surface antigen were undetectable throughout maturation of adherent monocytes over 10 days. CXCR4 RNA and membrane antigen were strongly expressed in newly adherent monocytes, but their levels declined at day 7. The amounts of CCR5 RNA remained stable, but the amounts of CCR5 antigen increased from undetectable to peak levels at day 7 and then declined slightly at day 10. Levels of susceptibility to laboratory (HIV-1BaL) and clinical strains of HIV-1 showed parallel kinetics, peaking at day 7 and then decreasing at days 10 to 14. The concordance of levels of HIV DNA and p24 antigen suggested that the changes in susceptibility with monocyte maturation were at or immediately after entry and correlated well with CCR5 expression and inversely with CXCR4 expression.


2000 ◽  
Vol 7 (6) ◽  
pp. 872-881 ◽  
Author(s):  
Seiichi Hashida ◽  
Setsuko Ishikawa ◽  
Kazuya Hashinaka ◽  
Ichiro Nishikata ◽  
Shinichi Oka ◽  
...  

ABSTRACT For earlier diagnosis of human immunodeficiency virus type 1 (HIV-1) infection, the sensitivities of immune complex transfer enzyme immunoassays for HIV-1 p24 antigen and antibody immunoglobulin G (IgG) to HIV-1 p17 antigen were improved approximately 25- and 90-fold, respectively, over those of the previous immunoassays by performing solid-phase immunoreactions with shaking and increasing the serum sample volumes, and immune complex transfer enzyme immunoassay of antibody IgM to p17 antigen was also performed in the same way as the improved immunoassay of antibody IgG to p17 antigen. By the improved immunoassays, p24 antigen and antibody IgG to p17 antigen were detected earlier in 32 and 53%, respectively, of the HIV-1 seroconversion serum panels tested than before the improvements, and p24 antigen was detected as early as or earlier than HIV-1 RNA by reverse transcriptase-PCR (RT-PCR) in all of the panels tested. In 4 panels out of 19 tested, antibody IgG to p17 antigen or both antibodies IgG and IgM to p17 antigen were detected earlier than p24 antigen and RNA, although the antibody levels declined slightly before their steep increases usually observed after p24 antigen and RNA. Thus, the window period in diagnosis of HIV-1 infection can be shortened by detection of p24 antigen with the improved immunoassay as much as by detection of RNA with RT-PCR and, in some cases, more by detection of antibodies IgG and IgM to p17 antigen with the improved immunoassays than by detections of p24 antigen with the improved immunoassay and RNA with RT-PCR.


1994 ◽  
Vol 36 (1) ◽  
pp. 32-39 ◽  
Author(s):  
W. Royal ◽  
O. A. Selnes ◽  
M. Concha ◽  
T. E. Nance-Sproson ◽  
J. C. McArthur

1998 ◽  
Vol 72 (10) ◽  
pp. 8174-8180 ◽  
Author(s):  
Joel Gozlan ◽  
Janet L. Lathey ◽  
Stephen A. Spector

ABSTRACT Protein tyrosine kinase (PTK) phosphorylation is involved in cellular proliferation and differentiation processes that are key factors for human immunodeficiency virus type 1 (HIV-1) regulation in infected monocytic cells. Short-term exposure of the chronically infected promyelocytic OM10 cell line with the PTK inhibitor genistein induced a dose-dependent increase in p24 antigen production in culture supernatants. This induction persisted in the presence of the reverse transcriptase inhibitor, zidovudine, and was associated with an increased transcription of HIV-1 multiply spliced and unspliced RNAs, suggesting a transcriptional mechanism targeting the integrated provirus. Genistein induced cell differentiation, apoptosis, and a G2 arrest in the OM10 cells. Cell differentiation and apoptosis were not directly involved in the observed increase in HIV-1 replication that was closely linked to genistein-induced G2 arrest. Alleviation of the G2 arrest by pentoxyfylline resulted in a concomitant reduction of HIV-1 to baseline replication. Additionally, by flow cytometry, a significant increase in the number of p24 antigen-expressing cells was observed in cells arrested in G2 compared to those located in G1 or S. Tyrosine kinase inhibition was found not to be essential for enhanced viral replication, which seemed to be related to two other properties of genistein, inhibition of topoisomerase II activity and inhibition of phosphotidylinositol turnover. These findings are consistent with the recent observation that HIV-1 Vpr induces viral replication through preventing proliferation of cells by arresting them in G2 of the cell cycle and strongly suggest that manipulation of the cell cycle plays an important role in HIV-1 pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document