scholarly journals Microbially Mediated Biodegradation of Hexahydro-1,3,5-Trinitro-1,3,5- Triazine by Extracellular Electron Shuttling Compounds

2006 ◽  
Vol 72 (9) ◽  
pp. 5933-5941 ◽  
Author(s):  
Man Jae Kwon ◽  
Kevin T. Finneran

ABSTRACT The potential for humic substances to stimulate the reduction of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) was investigated. This study describes a novel approach for the remediation of RDX-contaminated environments using microbially mediated electron shuttling. Incubations without cells demonstrated that reduced AQDS transfers electrons directly to RDX, which was reduced without significant accumulation of the nitroso intermediates. Three times as much reduced AQDS (molar basis) was needed to completely reduce RDX. The rate and extent of RDX reduction differed greatly among electron shuttle/acceptor amendments for resting cell suspensions of Geobacter metallireducens and G. sulfurreducens with acetate as the sole electron donor. AQDS and purified humic substances stimulated the fastest rate of RDX reduction. The nitroso metabolites did not significantly accumulate in the presence of AQDS or humic substances. RDX reduction in the presence of poorly crystalline Fe(III) was relatively slow and metabolites transiently accumulated. However, adding humic substances or AQDS to Fe(III)-containing incubations increased the reduction rates. Cells of G. metallireducens alone reduced RDX; however, the rate of RDX reduction was slow relative to AQDS-amended incubations. These data suggest that extracellular electron shuttle-mediated RDX transformation is not organism specific but rather is catalyzed by multiple Fe(III)- and humic-reducing species. Electron shuttle-mediated RDX reduction may eventually become a rapid and effective cleanup strategy in both Fe(III)-rich and Fe(III)-poor environments.

2019 ◽  
Vol 244 ◽  
pp. 423-430 ◽  
Author(s):  
Xiaoyun Xu ◽  
Huang Huang ◽  
Yue Zhang ◽  
Zibo Xu ◽  
Xinde Cao

2017 ◽  
Author(s):  
Dawn E Holmes ◽  
Roberto Orelana ◽  
Ludovic Giloteaux ◽  
Li-Ying Wang ◽  
Pravin Shrestha ◽  
...  

AbstractPrevious studies ofin situbioremediation of uranium-contaminated groundwater with acetate injections have focused on the role ofGeobacterspecies in U(VI) reduction because of a lack of other abundant known U(VI)-reducing microorganisms. Monitoring the levels of methyl CoM reductase subunit A (mcrA) transcripts during an acetate-injection field experiment demonstrated that acetoclastic methanogens from the genusMethanosarcinawere enriched after 40 days of acetate amendment. The increased abundance ofMethanosarcinacorresponded with an accumulation of methane in the groundwater. An enrichment culture dominated by aMethanosarcinaspecies with the sameMethanosarcina mcrAsequence that predominated in the field experiment could effectively convert acetate to methane. In order to determine whetherMethanosarcinaspecies could be participating in U(VI) reduction in the subsurface, cell suspensions ofM. barkeriwere incubated in the presence of U(VI) with acetate provided as the electron donor. U(VI) was reduced by metabolically activeM. barkericells, however, no U(VI) reduction was observed in inactive controls. These results demonstrate thatMethanosarcinaspecies could play an important role in the long-term bioremediation of uranium-contaminated aquifers after depletion of Fe(III) oxides limits the growth ofGeobacterspecies. The results also suggest thatMethanosarcinahave the potential to influence uranium geochemistry in a diversity of anaerobic sedimentary environments.


1976 ◽  
Vol 22 (2) ◽  
pp. 159-164 ◽  
Author(s):  
Chii-Guary Tsai ◽  
Diane M. Gates ◽  
W. M. Ingledew ◽  
G. A. Jones

Under anaerobic conditions, resting cell suspensions of Coprococcus sp. Pe15 degraded 1 molecule of phloroglucinol to 2 molecules of acetic acid and 2 molecules of carbon dioxide. The organism metabolized the flavonoids rhamnetin and quercetin anaerobically in 20% rumen fluid medium but failed to grow under similar conditions at the expense of any of 39 other aromatic or flavonoid compounds tested.


2002 ◽  
Vol 68 (5) ◽  
pp. 2445-2452 ◽  
Author(s):  
John D. Coates ◽  
Kimberly A. Cole ◽  
Romy Chakraborty ◽  
Susan M. O'Connor ◽  
Laurie A. Achenbach

ABSTRACT Previous studies have demonstrated that reduced humic substances (HS) can be reoxidized by anaerobic bacteria such as Geobacter, Geothrix, and Wolinella species with a suitable electron acceptor; however, little is known of the importance of this metabolism in the environment. Recently we investigated this metabolism in a diversity of environments including marine and aquatic sediments, forest soils, and drainage ditch soils. Most-probable-number enumeration studies were performed using 2,6-anthrahydroquinone disulfonate (AHDS), an analog for reduced HS, as the electron donor with nitrate as the electron acceptor. Anaerobic organisms capable of utilizing reduced HS as an electron donor were found in all environments tested and ranged from a low of 2.31 × 101 in aquifer sediments to a high of 9.33 × 106 in lake sediments. As part of this study we isolated six novel organisms capable of anaerobic AHDS oxidation. All of the isolates coupled the oxidation of AHDS to the reduction of nitrate with acetate (0.1 mM) as the carbon source. In the absence of cells, no AHDS oxidation was apparent, and in the absence of AHDS, no cell density increase was observed. Generally, nitrate was reduced to N2. Analysis of the AHDS and its oxidized form, 2,6-anthraquinone disulfonate (AQDS), in the medium during growth revealed that the anthraquinone was not being biodegraded as a carbon source and was simply being oxidized as an energy source. Determination of the AHDS oxidized and nitrate reduced accounted for 109% of the theoretical electron transfer. In addition to AHDS, all of these isolates could also couple the oxidation of reduced humic substances to the reduction of nitrate. No HS oxidation occurred in the absence of cells and in the absence of a suitable electron acceptor, demonstrating that these organisms were capable of utilizing natural HS as an energy source and that AHDS serves as a suitable analog for studying this metabolism. Alternative electron donors included simple volatile fatty acids such as propionate, butyrate, and valerate as well as simple organic acids such as lactate and pyruvate. Analysis of the complete sequences of the 16S rRNA genes revealed that the isolates were not closely related to each other and were phylogenetically diverse, with members in the alpha, beta, gamma, and delta subdivisions of the Proteobacteria. Most of the isolates were closely related to known genera not previously recognized for their ability to couple growth to HS oxidation, while one of the isolates represented a new genus in the delta subclass of the Proteobacteria. The results presented here demonstrate that microbial oxidation of HS is a ubiquitous metabolism in the environment. This study represents the first description of HS-oxidizing isolates and demonstrates that microorganisms capable of HS oxidation are phylogenetically diverse.


2009 ◽  
Vol 75 (11) ◽  
pp. 3641-3647 ◽  
Author(s):  
Gary A. Icopini ◽  
Joe G. Lack ◽  
Larry E. Hersman ◽  
Mary P. Neu ◽  
Hakim Boukhalfa

ABSTRACT We examined the ability of the metal-reducing bacteria Geobacter metallireducens GS-15 and Shewanella oneidensis MR-1 to reduce Pu(VI) and Pu(V). Cell suspensions of both bacteria reduced oxidized Pu [a mixture of Pu(VI) and Pu(V)] to Pu(IV). The rate of plutonium reduction was similar to the rate of U(VI) reduction obtained under similar conditions for each bacteria. The rates of Pu(VI) and U(VI) reduction by cell suspensions of S. oneidensis were slightly higher than the rates observed with G. metallireducens. The reduced form of Pu was characterized as aggregates of nanoparticulates of Pu(IV). Transmission electron microscopy images of the solids obtained from the cultures after the reduction of Pu(VI) and Pu(V) by S. oneidensis show that the Pu precipitates have a crystalline structure. The nanoparticulates of Pu(IV) were precipitated on the surface of or within the cell walls of the bacteria. The production of Pu(III) was not observed, which indicates that Pu(IV) was the stable form of reduced Pu under these experimental conditions. Experiments examining the ability of these bacteria to use Pu(VI) as a terminal electron acceptor for growth were inconclusive. A slight increase in cell density was observed for both G. metallireducens and S. oneidensis when Pu(VI) was provided as the sole electron acceptor; however, Pu(VI) concentrations decreased similarly in both the experimental and control cultures.


1973 ◽  
Vol 52 (6) ◽  
pp. 1209-1215 ◽  
Author(s):  
Charles F. Schachtele ◽  
John A. Mayo

Streptococcus mutans, S sanguis, and S salivarius use a phosphoenolpyruvate (PEP)-dependent phosphotransferase system that results in phosphorylation of glucose at carbon 6. This enzyme system is not sensitive to fluoride. Glucose uptake into resting cell suspensions is sensitive to fluoride because of inhibition of intracellular PEP production. The glucose phosphotransferase system is constitutive in oral streptococci.


Sign in / Sign up

Export Citation Format

Share Document