Phosphoenolpyruvate-Dependent Glucose Transport in Oral Streptococci

1973 ◽  
Vol 52 (6) ◽  
pp. 1209-1215 ◽  
Author(s):  
Charles F. Schachtele ◽  
John A. Mayo

Streptococcus mutans, S sanguis, and S salivarius use a phosphoenolpyruvate (PEP)-dependent phosphotransferase system that results in phosphorylation of glucose at carbon 6. This enzyme system is not sensitive to fluoride. Glucose uptake into resting cell suspensions is sensitive to fluoride because of inhibition of intracellular PEP production. The glucose phosphotransferase system is constitutive in oral streptococci.

1987 ◽  
Vol 66 (2) ◽  
pp. 486-491 ◽  
Author(s):  
B. Mansson-Rahemtulla ◽  
D.C. Baldone ◽  
K.M. Pruitt ◽  
F. Rahemtulla

Hypothiocyanous acid (HOSCN) and hypothiocyanite (OSCN-) were generated by the antibody-independent salivary peroxidase (SP) system. The metabolism of Streptococcus mutans NCTC 10449 was examined by uniformly labeled glucose incorporation studies. We found that the SP-system causes a pH-dependent inhibition of 14C-labeled glucose uptake, and that the effects of HOSCN/OSCN- are bacteriostatic. The results also showed that, at low pH, bacteria required more time to recover fully from HOSCN/OSCN- inhibition. When control experiments were performed in the absence of HOSCN/OSCN-, but the pH was varied, we found a positive correlation between pH and the rate of 14C-glucose incorporation. The results also showed that pH did not affect the maximum incorporation of 14C-glucose, demonstrating that S. mutans can adapt to pH changes in the environment. Based on the data obtained, we postulate that the antibody-independent SP system plays an important role in the regulation of the metabolism of oral streptococci.


2006 ◽  
Vol 188 (11) ◽  
pp. 3748-3756 ◽  
Author(s):  
Jacqueline Abranches ◽  
Melissa M. Candella ◽  
Zezhang T. Wen ◽  
Henry V. Baker ◽  
Robert A. Burne

ABSTRACT The phosphoenolpyruvate:sugar phosphotransferase system (PTS) is the major carbohydrate transport system in oral streptococci. The mannose-PTS of Streptococcus mutans, which transports mannose and glucose, is involved in carbon catabolite repression (CCR) and regulates the expression of known virulence genes. In this study, we investigated the role of EIIGlc and EIIABMan in sugar metabolism, gene regulation, biofilm formation, and competence. The results demonstrate that the inactivation of ptsG, encoding a putative EIIGlc, did not lead to major changes in sugar metabolism or affect the phenotypes of interest. However, the loss of EIIGlc was shown to have a significant impact on the proteome and to affect the expression of a known virulence factor, fructan hydrolase (fruA). JAM1, a mutant strain lacking EIIABMan, had an impaired capacity to form biofilms in the presence of glucose and displayed a decreased ability to be transformed with exogenous DNA. Also, the lactose- and cellobiose-PTSs were positively and negatively regulated by EIIABMan, respectively. Microarrays were used to investigate the profound phenotypic changes displayed by JAM1, revealing that EIIABMan of S. mutans has a key regulatory role in energy metabolism, possibly by sensing the energy levels of the cells or the carbohydrate availability and, in response, regulating the activity of transcription factors and carbohydrate transporters.


2003 ◽  
Vol 69 (8) ◽  
pp. 4760-4769 ◽  
Author(s):  
Jacqueline Abranches ◽  
Yi-Ywan M. Chen ◽  
Robert A. Burne

ABSTRACT The phosphoenolpyruvate:sugar phosphotransferase system (PTS) is the major sugar uptake system in oral streptococci. The role of EIIABMan (encoded by manL) in gene regulation and sugar transport was investigated in Streptococcus mutans UA159. The manL knockout strain, JAM1, grew more slowly than the wild-type strain in glucose but grew faster in mannose and did not display diauxic growth, indicating that EIIABMan is involved in sugar uptake and in carbohydrate catabolite repression. PTS assays of JAM1, and of strains lacking the inducible (fruI) and constitutive (fruCD) EII fructose, revealed that S. mutans EIIABMan transported mannose and glucose and provided evidence that there was also a mannose-inducible or glucose-repressible mannose PTS. Additionally, there appears to be a fructose PTS that is different than FruI and FruCD. To determine whether EIIABMan controlled expression of the known virulence genes, glucosyltransferases (gtfBC) and fructosyltransferase (ftf) promoter fusions of these genes were established in the wild-type and EIIABMan-deficient strains. In the manL mutant, the level of chloramphenicol acetyltransferase activity expressed from the gtfBC promoter was up to threefold lower than that seen with the wild-type strain at pH 6 and 7, indicating that EIIABMan is required for optimal expression of gtfBC. No significant differences were observed between the mutant and the wild-type background in ftf regulation, with the exception that under glucose-limiting conditions at pH 7, the mutant exhibited a 2.1-fold increase in ftf expression. Two-dimensional gel analysis of batch-grown cells of the EIIABMan-deficient strain indicated that the expression of at least 38 proteins was altered compared to that seen with the wild-type strain, revealing that EIIABMan has a pleiotropic effect on gene expression.


1984 ◽  
Vol 30 (4) ◽  
pp. 495-502 ◽  
Author(s):  
Christian Vadeboncoeur

The presence of three distinct enzymes II that catalysed the phosphoenolpyruvate-dependent phosphorylation of glucose, fructose, and mannose was established in membranes of glucose-grown cells of Streptococcus salivarius 25975 and various strains of Streptococcus mutans. The enzyme II mannose phosphorylated mainly mannose, glucose, and 2-deoxyglucose, and the enzyme II glucose phosphorylated glucose, α-methylglucoside, and 2-deoxyglucose. The phosphoenolpyruvate-dependent phosphorylation of glucose and α-methylglucoside by isolated membrane of wild-type or EII mannose negative mutant cells did not require the presence of any soluble protein other than enzyme I and the phosphocarrier protein HPr. This result suggested that oral streptococci do not possess a soluble factor III glucose. The enzyme II activities varied as a function of the growth sugar but were not coordinately regulated. The variation elicited by specific sugars was not identical for all the strains tested. Nevertheless, in the case of the S. mutans strains, growth at the expense of lactose always caused a significant decrease in the level of enzyme II activities. Finally, experiments conducted with EII mannose negative mutants and also with a pseudorevertant isolated from one of these mutants indicated that the preferential utilization of glucose over lactose by cells growing in mixtures depended on the presence of the EII mannose, but not on glucose-derived metabolites.


2006 ◽  
Vol 52 (10) ◽  
pp. 977-983 ◽  
Author(s):  
Tuan-Nghia Phan ◽  
Robert E Marquis

Triclosan was found to be a potent inhibitor of the F(H+)-ATPase of the oral pathogen Streptococcus mutans and to increase proton permeabilities of intact cells. Moreover, it acted additively with weak-acid transmembrane proton carriers, such as fluoride or sorbate, to sensitize glycolysis to acid inhibition. Even at neutral pH, triclosan could inhibit glycolysis more directly as an irreversible inhibitor of the glycolytic enzymes pyruvate kinase, lactic dehydro genase, aldolase, and the phosphoenolpyruvate:sugar phosphotransferase system (PTS). Cell glycolysis in suspensions or biofilms was inhibited in a pH-dependent manner by triclosan at a concentration of about 0.1 mmol/L at pH 7, approximately the lethal concentration for S. mutans cells in suspensions. Cells in intact biofilms were almost as sensitive to triclosan inhibition of glycolysis as were cells in suspensions but were more resistant to killing. Targets for irreversible inhibition of glycolysis included the PTS and cytoplasmic enzymes, specifically pyruvate kinase, lactic dehydrogenase, and to a lesser extent, aldolase. General conclusions are that triclosan is a multi-target inhibitor for mutans streptococci, which lack a triclosan-sensitive FabI enoyl-ACP reductase, and that inhibition of glycolysis in dental plaque biofilms, in which triclosan is retained after initial or repeated exposure, would reduce cariogenicity.Key words: triclosan, oral streptococci, glycolysis, biofilms, F-ATPase.


1980 ◽  
Vol 59 (2) ◽  
pp. 159-167 ◽  
Author(s):  
Lee R. Brown ◽  
Sandra F. Handler ◽  
Iris M. Horton ◽  
Joseph L. Streckfuss ◽  
Samuel Dreizen

A fluoride-sensitive (FS) strain of Streptococcus mutans and a laboratory-induced fluoride-resistant (FR) offspring were compared for the effects of sodium fluoride on viability and growth. There was a significant fluoride-related loss of viability in resting cell suspensions of the FS strain during a 47-hour exposure to fluoride levels above 75 ppm that was not encountered with the FR strain. The addition of 300 ppmF to actively growing six-hour broth cultures almost totally arrested the growth of the FS strain, while only slightly reducing that of the FR culture. The addition of 600 ppmF immediately terminated FS growth, and greatly reduced the rate and maximum growth of FR cultures.


2021 ◽  
Vol 22 (13) ◽  
pp. 7228
Author(s):  
Ching-Chia Wang ◽  
Huang-Jen Chen ◽  
Ding-Cheng Chan ◽  
Chen-Yuan Chiu ◽  
Shing-Hwa Liu ◽  
...  

Urinary acrolein adduct levels have been reported to be increased in both habitual smokers and type-2 diabetic patients. The impairment of glucose transport in skeletal muscles is a major factor responsible for glucose uptake reduction in type-2 diabetic patients. The effect of acrolein on glucose metabolism in skeletal muscle remains unclear. Here, we investigated whether acrolein affects muscular glucose metabolism in vitro and glucose tolerance in vivo. Exposure of mice to acrolein (2.5 and 5 mg/kg/day) for 4 weeks substantially increased fasting blood glucose and impaired glucose tolerance. The glucose transporter-4 (GLUT4) protein expression was significantly decreased in soleus muscles of acrolein-treated mice. The glucose uptake was significantly decreased in differentiated C2C12 myotubes treated with a non-cytotoxic dose of acrolein (1 μM) for 24 and 72 h. Acrolein (0.5–2 μM) also significantly decreased the GLUT4 expression in myotubes. Acrolein suppressed the phosphorylation of glucose metabolic signals IRS1, Akt, mTOR, p70S6K, and GSK3α/β. Over-expression of constitutive activation of Akt reversed the inhibitory effects of acrolein on GLUT4 protein expression and glucose uptake in myotubes. These results suggest that acrolein at doses relevant to human exposure dysregulates glucose metabolism in skeletal muscle cells and impairs glucose tolerance in mice.


2009 ◽  
Vol 103 (2) ◽  
pp. 197-205 ◽  
Author(s):  
Hsu-Fang Chou ◽  
Kun-Hung Chuang ◽  
Yi-Shan Tsai ◽  
Yi-Ju Chen

Genistein and daidzein are known to have both beneficial and adverse effects on human health due to their many biological actions at the cellular level. Both isoflavones have been shown to inhibit GLUT-mediated glucose transport across the plasma membrane of mammalian cells. Since lysosomal membrane transport is essential for maintaining cellular homeostasis, the present study examined the effects of genistein and daidzein on glucose and sulphate transport in isolated rat liver lysosomes. Both genistein and daidzein significantly inhibited lysosomal glucose uptake. Genistein was a more potent glucose transport inhibitor than daidzein, with a half-maximum inhibitory concentration (IC50) of 45 μmol/l compared with 71 μmol/l for daidzein. Uptake kinetics of d-glucose showed a significant decrease in Vmax (control:genistein treat = 1489 (sem 91):507 (sem 76) pmol/unit of β-hexosaminidase per 15 s) without a change in Km. The presence of 50 μm-genistein in the medium also reduced glucose efflux from lysosomes preloaded with 100 mm-d-glucose. Genistein also inhibited lysosomal sulphate transport. Similar to its effects on glucose uptake kinetics, genistein treatment caused a significant decrease in sulphate uptake Vmax (control:genistein treat = 87 (sem 4):59 (sem 5) pmol/unit of β-hexosaminidase per 30 s), while the Km was not affected. The evidence provided by the present study suggests that the most likely mechanism of lysosomal glucose transport inhibition by genistein is via direct interaction between genistein and the transporter, rather than mediation by tyrosine kinase inactivation. Genistein likely has a similar mechanism of directly inhibiting sulphate transporter.


2008 ◽  
Vol 198 (3) ◽  
pp. 561-569 ◽  
Author(s):  
Wenbin Shang ◽  
Ying Yang ◽  
Libin Zhou ◽  
Boren Jiang ◽  
Hua Jin ◽  
...  

A series of clinical trials and animal experiments have demonstrated that ginseng and its major active constituent, ginsenosides, possess glucose-lowering action. In our previous study, ginsenoside Rb1 has been shown to regulate peroxisome proliferator-activated receptor γ activity to facilitate adipogenesis of 3T3-L1 cells. However, the effect of Rb1 on glucose transport in insulin-sensitive cells and its molecular mechanism need further elucidation. In this study, Rb1 significantly stimulated basal and insulin-mediated glucose uptake in a time- and dose-dependent manner in 3T3-L1 adipocytes and C2C12 myotubes; the maximal effect was achieved at a concentration of 1 μM and a time of 3 h. In adipocytes, Rb1 promoted GLUT1 and GLUT4 translocations to the cell surface, which was examined by analyzing their distribution in subcellular membrane fractions, and enhanced translocation of GLUT4 was confirmed using the transfection of GLUT4-green fluorescence protein in Chinese Hamster Ovary cells. Meanwhile, Rb1 increased the phosphorylation of insulin receptor substrate-1 and protein kinase B (PKB), and stimulated phosphatidylinositol 3-kinase (PI3K) activity in the absence of the activation of the insulin receptor. Rb1-induced glucose uptake as well as GLUT1 and GLUT4 translocations was inhibited by the PI3K inhibitor. These results suggest that ginsenoside Rb1 stimulates glucose transport in insulin-sensitive cells by promoting translocations of GLUT1 and GLUT4 by partially activating the insulin signaling pathway. These findings are useful in understanding the hypoglycemic and anti-diabetic properties of ginseng and ginsenosides.


Sign in / Sign up

Export Citation Format

Share Document