scholarly journals Symbiotic Nitrogen Fixation and the Challenges to Its Extension to Nonlegumes

2016 ◽  
Vol 82 (13) ◽  
pp. 3698-3710 ◽  
Author(s):  
Florence Mus ◽  
Matthew B. Crook ◽  
Kevin Garcia ◽  
Amaya Garcia Costas ◽  
Barney A. Geddes ◽  
...  

ABSTRACTAccess to fixed or available forms of nitrogen limits the productivity of crop plants and thus food production. Nitrogenous fertilizer production currently represents a significant expense for the efficient growth of various crops in the developed world. There are significant potential gains to be had from reducing dependence on nitrogenous fertilizers in agriculture in the developed world and in developing countries, and there is significant interest in research on biological nitrogen fixation and prospects for increasing its importance in an agricultural setting. Biological nitrogen fixation is the conversion of atmospheric N2to NH3, a form that can be used by plants. However, the process is restricted to bacteria and archaea and does not occur in eukaryotes. Symbiotic nitrogen fixation is part of a mutualistic relationship in which plants provide a niche and fixed carbon to bacteria in exchange for fixed nitrogen. This process is restricted mainly to legumes in agricultural systems, and there is considerable interest in exploring whether similar symbioses can be developed in nonlegumes, which produce the bulk of human food. We are at a juncture at which the fundamental understanding of biological nitrogen fixation has matured to a level that we can think about engineering symbiotic relationships using synthetic biology approaches. This minireview highlights the fundamental advances in our understanding of biological nitrogen fixation in the context of a blueprint for expanding symbiotic nitrogen fixation to a greater diversity of crop plants through synthetic biology.

2019 ◽  
Author(s):  
Carlos Eduardo Flores-Tinoco ◽  
Matthias Christen ◽  
Beat Christen

Biological nitrogen fixation emerging from the symbiosis between bacteria and crop plants holds a significant promise to increase the sustainability of agriculture. One of the biggest hurdles for the engineering of nitrogen-fixing organisms is to identify the metabolic blueprint for symbiotic nitrogen fixation. Here, we report on the CATCH-N cycle, a novel metabolic network based on co-catabolism of plant-provided arginine and succinate to drive the energy-demanding process of symbiotic nitrogen fixation in endosymbiotic rhizobia. Using systems biology, isotope labeling studies and transposon sequencing in conjunction with biochemical characterization, we uncovered highly redundant network components of the CATCH-N cycle including transaminases that interlink the co-catabolism of arginine and succinate. The CATCH-N cycle shares aspects with plant mitochondrial arginine degradation path-way. However, it uses N2 as an additional sink for reductant and therefore delivers up to 25% higher yields of nitrogen than classical arginine catabolism — two alanines and three ammonium ions are secreted for each input of arginine and succinate. We argue that the CATCH-N cycle has evolved as part of a specific mechanism to sustain bacterial metabolism in the microoxic and acid environment of symbiosomes. In sum, our systems-level findings provide the theoretical framework and enzymatic blueprint for the rational design of plants and plant-associated organisms with new properties for improved nitrogen fixation.Significance StatementSymbiotic bacteria assimilate nitrogen from the air and fix it into a form that can be used by plants in a process known as biological nitrogen fixation. In agricultural systems, this process is restricted mainly to legumes, yet there is considerable interest in exploring whether similar symbioses can be developed in non-legumes including cereals and other important crop plants. Here we present systems-level findings on the minimal metabolic function set for biological nitrogen fixation that provides the theoretical framework for rational engineering of novel organisms with improved nitrogen-fixing capabilities.


2012 ◽  
Vol 58 (No. 8) ◽  
pp. 360-366 ◽  
Author(s):  
C.S.L. Vicente ◽  
M.A. Pérez-Fernández ◽  
G. Pereira ◽  
M.M. Tavares-de-Sousa

The present work studied the effects of water deficiency conditions on the biological nitrogen fixation of three native rhizobia (SafPt12, SafPt6, and AjuPt16) isolated from Biserrula pelecinus L., and a reference strain Mesorhizobium ciceri biovar biserrulae. In terms of plant-water status, B. pelecinus showed typical signs of drought avoidance strategies such as reducing the aboveground development (i.e. reduction in leaf surface area and increase in root/shoot ratio) in detriment of a better developed root system. Dry-matter production and nitrogen content of the aboveground biomass decreased with the increasing levels of drought stress, as well as nodulation and symbiotic nitrogen fixation, for all the tested isolates. The parameters investigated suggested that SafPt12 was the most successful native rhizobia to withstand severe water conditions without compromising nitrogen fixation demands.    


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Qin Li ◽  
Haowei Zhang ◽  
Liqun Zhang ◽  
Sanfeng Chen

Abstract Background Biological nitrogen fixation is catalyzed by Mo-, V- and Fe-nitrogenases that are encoded by nif, vnf and anf genes, respectively. NifB is the key protein in synthesis of the cofactors of all nitrogenases. Most diazotrophic Paenibacillus strains have only one nifB gene located in a compact nif gene cluster (nifBHDKENX(orf1)hesAnifV). But some Paenibacillus strains have multiple nifB genes and their functions are not known. Results A total of 138 nifB genes are found in the 116 diazotrophic Paenibacillus strains. Phylogeny analysis shows that these nifB genes fall into 4 classes: nifBI class including the genes (named as nifB1 genes) that are the first gene within the compact nif gene cluster, nifBII class including the genes (named as nifB2 genes) that are adjacent to anf or vnf genes, nifBIII class whose members are designated as nifB3 genes and nifBIV class whose members are named as nifB4 genes are scattered on genomes. Functional analysis by complementation of the ∆nifB mutant of P. polymyxa which has only one nifB gene has shown that both nifB1 and nifB2 are active in synthesis of Mo-nitrogenase, while nifB3 and nifB4 genes are not. Deletion analysis also has revealed that nifB1 of Paenibacillus sabinae T27 is involved in synthesis of Mo-nitrogenase, while nifB3 and nifB4 genes are not. Complementation of the P. polymyxa ∆nifBHDK mutant with the four reconstituted operons: nifB1anfHDGK, nifB2anfHDGK, nifB1vnfHDGK and nifB2vnfHDGK, has shown both that nifB1 and nifB2 were able to support synthesis of Fe- or V-nitrogenases. Transcriptional results obtained in the original Paenibacillus strains are consistent with the complementation results. Conclusions The multiple nifB genes of the diazotrophic Paenibacillus strains are divided into 4 classes. The nifB1 located in a compact nif gene cluster (nifBHDKENX(orf1)hesAnifV) and the nifB2 genes being adjacent to nif or anf or vnf genes are active in synthesis of Mo-, Fe and V-nitrogenases, but nifB3 and nifB4 are not. The reconstituted anf system comprising 8 genes (nifBanfHDGK and nifXhesAnifV) and vnf system comprising 10 genes (nifBvnfHDGKEN and nifXhesAnifV) support synthesis of Fe-nitrogenase and V-nitrogenase in Paenibacillus background, respectively.


Sign in / Sign up

Export Citation Format

Share Document