scholarly journals Formate Oxidation-Driven Calcium Carbonate Precipitation by Methylocystis parvus OBBP

2014 ◽  
Vol 80 (15) ◽  
pp. 4659-4667 ◽  
Author(s):  
Giovanni Ganendra ◽  
Willem De Muynck ◽  
Adrian Ho ◽  
Eleni Charalampous Arvaniti ◽  
Baharak Hosseinkhani ◽  
...  

ABSTRACTMicrobially induced carbonate precipitation (MICP) applied in the construction industry poses several disadvantages such as ammonia release to the air and nitric acid production. An alternative MICP from calcium formate byMethylocystis parvusOBBP is presented here to overcome these disadvantages. To induce calcium carbonate precipitation,M. parvuswas incubated at different calcium formate concentrations and starting culture densities. Up to 91.4% ± 1.6% of the initial calcium was precipitated in the methane-amended cultures compared to 35.1% ± 11.9% when methane was not added. Because the bacteria could only utilize methane for growth, higher culture densities and subsequently calcium removals were exhibited in the cultures when methane was added. A higher calcium carbonate precipitate yield was obtained when higher culture densities were used but not necessarily when more calcium formate was added. This was mainly due to salt inhibition of the bacterial activity at a high calcium formate concentration. A maximum 0.67 ± 0.03 g of CaCO3g of Ca(CHOOH)2−1calcium carbonate precipitate yield was obtained when a culture of 109cells ml−1and 5 g of calcium formate liter−1were used. Compared to the current strategy employing biogenic urea degradation as the basis for MICP, our approach presents significant improvements in the environmental sustainability of the application in the construction industry.

2021 ◽  
Vol 107 ◽  
pp. 76-81
Author(s):  
Intan Nurfarzana Mohd Razib Fatheen ◽  
Che Husain Syuhani ◽  
Hamzah Fazlena ◽  
Najwa Mohd Rodhi Miradatul ◽  
Veny Harumi

In the present work, the effect of temperature on calcium carbonate precipitation in the biomimetic calcium chloride solution was investigated. A spontaneous calcium carbonate precipitate was formed in the biomimetic calcium chloride solution as a result of the carbon dioxide hydration process. The reaction was conducted at different temperature range vary from 30°C to 100°C. The mass of the calcium carbonate precipitate and the pH solution was measured in the study. The finding indicated that an increment of the temperature has led to the fast pH reduction of the solutions to 7.0. However, the process has retarded the calcium carbonate precipitation process. The optimum temperature for higher calcium carbonate precipitation has occurred at the temperature range of 47.5°C – 65°C which gave the highest calcium carbonate precipitate at 0.121g. The addition of Tris buffer into the calcium chloride solution in this study did not gave an inhibition effect on the calcium carbonate precipitate. Based on the results, an operating condition at 47.5°C – 65°C was recommended to be used in mineral carbonization of CO2 using the biomimetic calcium chloride solution.


2021 ◽  
pp. 117444
Author(s):  
Xiaoxia Liu ◽  
Gernot Zarfel ◽  
Renata van der Weijden ◽  
Willibald Loiskandl ◽  
Brigitte Bitschnau ◽  
...  

2021 ◽  
Vol 109 ◽  
pp. 103391
Author(s):  
Catherine M. Kirkland ◽  
Arda Akyel ◽  
Randy Hiebert ◽  
Jay McCloskey ◽  
Jim Kirksey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document