scholarly journals Cloning and Expression of Two Crystal Protein Genes, cry30Ba1 and cry44Aa1, Obtained from a Highly Mosquitocidal Strain, Bacillus thuringiensis subsp. entomocidus INA288

2006 ◽  
Vol 72 (8) ◽  
pp. 5673-5676 ◽  
Author(s):  
Takeshi Ito ◽  
Tomonori Ikeya ◽  
Ken Sahara ◽  
Hisanori Bando ◽  
Shin-ichiro Asano

ABSTRACT Two novel crystal protein genes, cry30Ba and cry44Aa, were cloned from Bacillus thuringiensis subsp. entomocidus INA288 and expressed in an acrystalliferous strain. Cry44Aa crystals were highly toxic to second-instar Culex pipiens pallens (50% mortality concentration [LC50] = 6 ng/ml) and Aedes aegypti (LC50 = 12 ng/ml); however, Cry30Ba crystals were not toxic.

2020 ◽  
Vol 173 ◽  
pp. 107386
Author(s):  
Yan Zhou ◽  
Zhongqi Wu ◽  
Jie Zhang ◽  
Yusong Wan ◽  
Wujun Jin ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ruiling Zhang ◽  
Wenjuan Liu ◽  
Qian Zhang ◽  
Xinyu Zhang ◽  
Zhong Zhang

AbstractCulex pipiens pallens is an important vector of lymphatic filariasis and epidemic encephalitis. Mosquito control is the main strategy used for the prevention of mosquito-borne diseases. Bacillus thuringiensis israelensis (Bti) is an entomopathogenic bacterium widely used in mosquito control. In this study, we profiled the microbiota and transcriptional response of the larvae of Cx. pipiens pallens exposed to different concentrations of Bti. The results demonstrated that Bti induced a significant effect on both the microbiota and gene expression of Cx. pipiens pallens. Compared to the control group, the predominant bacteria changed from Actinobacteria to Firmicutes, and with increase in the concentration of Bti, the abundance of Actinobacteria was gradually reduced. Similar changes were also detected at the genus level, where Bacillus replaced Microbacterium, becoming the predominant genus in Bti-exposed groups. Furthermore, alpha diversity analysis indicated that Bti exposure changed the diversity of the microbota, possibly because the dysbiosis caused by the Bti infection inhibits some bacteria and provides opportunities to other opportunistic taxa. Pathway analysis revealed significant enhancement for processes associated with sphingolipid metabolism, glutathione metabolism and glycerophospholipid metabolism between all Bti-exposed groups and control group. Additionally, genes associated with the Toll and Imd signaling pathway were found to be notably upregulated. Bti infection significantly changed the bacterial community of larvae of Cx. pipiens pallens.


1997 ◽  
Vol 24 (6) ◽  
pp. 451-454 ◽  
Author(s):  
J.‐Y. Roh ◽  
H.‐W. Park ◽  
Y.‐H. Je ◽  
D.‐W. Lee ◽  
B.‐R. Jin ◽  
...  

2002 ◽  
Vol 5 (2) ◽  
pp. 227-231 ◽  
Author(s):  
Moo-Key Kim ◽  
Young-Su Jang ◽  
Young-Joon Ahn ◽  
Dong-Kyu Lee ◽  
Hoi-Seon Lee

Sign in / Sign up

Export Citation Format

Share Document