scholarly journals Stable Isotope Probing of an Algal Bloom To Identify Uncultivated Members of the Rhodobacteraceae Associated with Low-Molecular-Weight Polycyclic Aromatic Hydrocarbon Degradation

2011 ◽  
Vol 77 (21) ◽  
pp. 7856-7860 ◽  
Author(s):  
Tony Gutierrez ◽  
David R. Singleton ◽  
Michael D. Aitken ◽  
Kirk T. Semple

ABSTRACTPolycyclic aromatic hydrocarbon (PAH)-degrading bacteria associated with an algal bloom in Tampa Bay, FL, were investigated by stable isotope probing (SIP) with uniformly labeled [13C]naphthalene. The dominant sequences in clone libraries constructed from13C-enriched bacterial DNA (from naphthalene enrichments) were identified as uncharacterized members of the familyRhodobacteraceae. Quantitative PCR primers targeting the 16S rRNA gene of these uncultivated organisms were used to determine their abundance in incubations amended with unlabeled naphthalene and phenanthrene, both of which showed substantial increases in gene copy numbers during the experiments. As demonstrated by this work, the application of uniformly13C-labeled PAHs in SIP experiments can successfully be used to identify novel PAH-degrading bacteria in marine waters.

2012 ◽  
Vol 78 (10) ◽  
pp. 3552-3559 ◽  
Author(s):  
David R. Singleton ◽  
Jing Hu ◽  
Michael D. Aitken

ABSTRACTA betaproteobacterium within the familyRhodocyclaceaepreviously identified as a pyrene degrader via stable-isotope probing (SIP) of contaminated soil (designated pyrene group 1 or PG1) was cultivated as the dominant member of a mixed bacterial culture. A metagenomic library was constructed, and the largest contigs were analyzed for genes associated with polycyclic aromatic hydrocarbon (PAH) metabolism. Eight pairs of genes with similarity to the α- and β-subunits of ring-hydroxylating dioxygenases (RHDs) associated with aerobic bacterial PAH degradation were identified and linked to PG1 through PCR analyses of a simplified enrichment culture. In tandem with a ferredoxin and reductase found in close proximity to one pair of RHD genes, six of the RHDs were cloned and expressed inEscherichia coli. Each cloned RHD was tested for activity against nine PAHs ranging in size from two to five rings. Despite differences in their predicted protein sequences, each of the six RHDs was capable of transforming phenanthrene and pyrene. Three RHDs could additionally transform naphthalene and fluorene, and these genotypes were also associated with the ability of theE. coliconstructs to convert indole to indigo. Only one of the six cloned RHDs was capable of transforming anthracene and benz[a]anthracene. None of the tested RHDs were capable of significantly transforming fluoranthene, chrysene, or benzo[a]pyrene.


2001 ◽  
Vol 67 (6) ◽  
pp. 2683-2691 ◽  
Author(s):  
L. L. Daane ◽  
I. Harjono ◽  
G. J. Zylstra ◽  
M. M. Häggblom

ABSTRACT Polycyclic aromatic hydrocarbon (PAH)-degrading bacteria were isolated from contaminated estuarine sediment and salt marsh rhizosphere by enrichment using either naphthalene, phenanthrene, or biphenyl as the sole source of carbon and energy. Pasteurization of samples prior to enrichment resulted in isolation of gram-positive, spore-forming bacteria. The isolates were characterized using a variety of phenotypic, morphologic, and molecular properties. Identification of the isolates based on their fatty acid profiles and partial 16S rRNA gene sequences assigned them to three main bacterial groups: gram-negative pseudomonads; gram-positive, non-spore-forming nocardioforms; and the gram-positive, spore-forming group,Paenibacillus. Genomic digest patterns of all isolates were used to determine unique isolates, and representatives from each bacterial group were chosen for further investigation. Southern hybridization was performed using genes for PAH degradation fromPseudomonas putida NCIB 9816-4, Comamonas testosteroni GZ42, Sphingomonas yanoikuyae B1, andMycobacterium sp. strain PY01. None of the isolates from the three groups showed homology to the B1 genes, only two nocardioform isolates showed homology to the PY01 genes, and only members of the pseudomonad group showed homology to the NCIB 9816-4 or GZ42 probes. The Paenibacillus isolates showed no homology to any of the tested gene probes, indicating the possibility of novel genes for PAH degradation. Pure culture substrate utilization experiments using several selected isolates from each of the three groups showed that the phenanthrene-enriched isolates are able to utilize a greater number of PAHs than are the naphthalene-enriched isolates. Inoculating two of the gram-positive isolates to a marine sediment slurry spiked with a mixture of PAHs (naphthalene, fluorene, phenanthrene, and pyrene) and biphenyl resulted in rapid transformation of pyrene, in addition to the two- and three-ringed PAHs and biphenyl. This study indicates that the rhizosphere of salt marsh plants contains a diverse population of PAH-degrading bacteria, and the use of plant-associated microorganisms has the potential for bioremediation of contaminated sediments.


2015 ◽  
Vol 81 (14) ◽  
pp. 4607-4615 ◽  
Author(s):  
Xiaoqing Wang ◽  
Christine E. Sharp ◽  
Gareth M. Jones ◽  
Stephen E. Grasby ◽  
Allyson L. Brady ◽  
...  

ABSTRACTThe exopolysaccharides (EPSs) produced by some bacteria are potential growth substrates for other bacteria in soil. We used stable-isotope probing (SIP) to identify aerobic soil bacteria that assimilated the cellulose produced byGluconacetobacter xylinusor the EPS produced byBeijerinckia indica. The latter is a heteropolysaccharide comprised primarily ofl-guluronic acid,d-glucose, andd-glycero-d-mannoheptose.13C-labeled EPS and13C-labeled cellulose were purified from bacterial cultures grown on [13C]glucose. Two soils were incubated with these substrates, and bacteria actively assimilating them were identified via pyrosequencing of 16S rRNA genes recovered from13C-labeled DNA. Cellulose C was assimilated primarily by soil bacteria closely related (93 to 100% 16S rRNA gene sequence identities) to known cellulose-degrading bacteria. However,B. indicaEPS was assimilated primarily by bacteria with low identities (80 to 95%) to known species, particularly by different members of the phylumPlanctomycetes. In one incubation, members of thePlanctomycetesmade up >60% of all reads in the labeled DNA and were only distantly related (<85% identity) to any described species. Although it is impossible with SIP to completely distinguish primary polysaccharide hydrolyzers from bacteria growing on produced oligo- or monosaccharides, the predominance ofPlanctomycetessuggested that they were primary degraders of EPS. Other bacteria assimilatingB. indicaEPS included members of theVerrucomicrobia, candidate division OD1, and theArmatimonadetes. The results indicate that some uncultured bacteria in soils may be adapted to using complex heteropolysaccharides for growth and suggest that the use of these substrates may provide a means for culturing new species.


2009 ◽  
Vol 75 (9) ◽  
pp. 2613-2620 ◽  
Author(s):  
David R. Singleton ◽  
Liza Guzmán Ramirez ◽  
Michael D. Aitken

ABSTRACT Acidovorax sp. strain NA3 was isolated from polycyclic aromatic hydrocarbon (PAH)-contaminated soil that had been treated in a bioreactor and enriched with phenanthrene. The 16S rRNA gene of the isolate possessed 99.8 to 99.9% similarity to the dominant sequences recovered during a previous stable-isotope probing experiment with [U-13C]phenanthrene on the same soil (D. R. Singleton, S. N. Powell, R. Sangaiah, A. Gold, L. M. Ball, and M. D. Aitken, Appl. Environ. Microbiol. 71:1202-1209, 2005). The strain grew on phenanthrene as a sole carbon and energy source and could mineralize 14C from a number of partially labeled PAHs, including naphthalene, phenanthrene, chrysene, benz[a]anthracene, and benzo[a]pyrene, but not pyrene or fluoranthene. Southern hybridizations of a genomic fosmid library with a fragment of the large subunit of the ring-hydroxylating dioxygenase gene from a naphthalene-degrading Pseudomonas strain detected the presence of PAH degradation genes subsequently determined to be highly similar in both nucleotide sequence and gene organization to an uncharacterized Alcaligenes faecalis gene cluster. The genes were localized to the chromosome of strain NA3. To test for gene induction by selected compounds, RNA was extracted from amended cultures and reverse transcribed, and cDNA associated with the enzymes involved in the first three steps of phenanthrene degradation was quantified by quantitative real-time PCR. Expression of each of the genes was induced most strongly by phenanthene and to a lesser extent by naphthalene, but other tested PAHs and PAH metabolites had negligible effects on gene transcript levels.


2009 ◽  
Vol 75 (19) ◽  
pp. 6322-6330 ◽  
Author(s):  
Aurélie Cébron ◽  
Thierry Beguiristain ◽  
Pierre Faure ◽  
Marie-Paule Norini ◽  
Jean-François Masfaraud ◽  
...  

ABSTRACT The polycyclic aromatic hydrocarbon (PAH) contamination, bacterial community, and PAH-degrading bacteria were monitored in aged PAH-contaminated soil (Neuves-Maisons [NM] soil; with a mean of 1,915 mg of 16 PAHs·kg−1 of soil dry weight) and in the same soil previously treated by thermal desorption (TD soil; with a mean of 106 mg of 16 PAHs·kg−1 of soil dry weight). This study was conducted in situ for 2 years using experimental plots of the two soils. NM soil was colonized by spontaneous vegetation (NM-SV), planted with Medicago sativa (NM-Ms), or left as bare soil (NM-BS), and the TD soil was planted with Medicago sativa (TD-Ms). The bacterial community density, structure, and diversity were estimated by real-time PCR quantification of the 16S rRNA gene copy number, temporal thermal gradient gel electrophoresis fingerprinting, and band sequencing, respectively. The density of the bacterial community increased the first year during stabilization of the system and stayed constant in the NM soil, while it continued to increase in the TD soil during the second year. The bacterial community structure diverged among all the plot types after 2 years on site. In the NM-BS plots, the bacterial community was represented mainly by Betaproteobacteria and G ammaproteobacteria. The presence of vegetation (NM-SV and NM-Ms) in the NM soil favored the development of a wider range of bacterial phyla (Alphaproteobacteria, Betaproteobacteria, G ammaproteobacteria, Verrucomicrobia, Actinobacteria, Firmicutes, and Chlorof l exi) that, for the most part, were not closely related to known bacterial representatives. Moreover, under the influence of the same plant, the bacterial community that developed in the TD-Ms was represented by different bacterial species (Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Actinobacteria) than that in the NM-Ms. During the 2 years of monitoring, the PAH concentration did not evolve significantly. The abundance of gram-negative (GN) and gram-positive (GP) PAH-degrading bacteria was estimated by real-time PCR quantification of specific functional genes encoding the α subunit of PAH-ring hydroxylating dioxygenase (PAH-RHDα). The percentage of the PAH-RHDα GN bacterial genes relative to 16S rRNA gene density decreased with time in all the plots. The GP PAH-RHDα bacterial gene proportion decreased in the NM-BS plots but stayed constant or increased under vegetation influence (NM-SV, NM-Ms, and TD-Ms).


2000 ◽  
Vol 66 (5) ◽  
pp. 1834-1843 ◽  
Author(s):  
Leen Bastiaens ◽  
Dirk Springael ◽  
Pierre Wattiau ◽  
Hauke Harms ◽  
Rupert deWachter ◽  
...  

ABSTRACT Two different procedures were compared to isolate polycyclic aromatic hydrocarbon (PAH)-utilizing bacteria from PAH-contaminated soil and sludge samples, i.e., (i) shaken enrichment cultures in liquid mineral medium in which PAHs were supplied as crystals and (ii) a new method in which PAH degraders were enriched on and recovered from hydrophobic membranes containing sorbed PAHs. Both techniques were successful, but selected from the same source different bacterial strains able to grow on PAHs as the sole source of carbon and energy. The liquid enrichment mainly selected for Sphingomonasspp., whereas the membrane method exclusively led to the selection ofMycobacterium spp. Furthermore, in separate membrane enrichment set-ups with different membrane types, three repetitive extragenic palindromic PCR-related Mycobacterium strains were recovered. The new Mycobacterium isolates were strongly hydrophobic and displayed the capacity to adhere strongly to different surfaces. One strain, Mycobacterium sp. LB501T, displayed an unusual combination of high adhesion efficiency and an extremely high negative charge. This strain may represent a new bacterial species as suggested by 16S rRNA gene sequence analysis. These results indicate that the provision of hydrophobic sorbents containing sorbed PAHs in the enrichment procedure discriminated in favor of certain bacterial characteristics. The new isolation method is appropriate to select for adherent PAH-degrading bacteria, which might be useful to biodegrade sorbed PAHs in soils and sludge.


2019 ◽  
Vol 85 (14) ◽  
Author(s):  
Jibing Li ◽  
Chunling Luo ◽  
Dayi Zhang ◽  
Xixi Cai ◽  
Longfei Jiang ◽  
...  

ABSTRACTTo identify and obtain the indigenous degraders metabolizing phenanthrene (PHE) and biphenyl (BP) from the complex microbial community within industrial wastewater, DNA-based stable-isotope probing (DNA-SIP) and cultivation-based methods were applied in the present study. DNA-SIP results showed that two bacterial taxa (VogesellaandAlicyclobacillus) were considered the key biodegraders responsible for PHE biodegradation only, whereasBacillusandCupriaviduswere involved in BP degradation.VogesellaandAlicyclobacillushave not been linked with PHE degradation previously. Additionally, DNA-SIP helped reveal the taxonomic identity ofRalstonia-like degraders involved in both PHE and BP degradation. To target the separation of functionalRalstonia-like degraders from the wastewater, we modified the traditional cultivation medium and culture conditions. Finally, an indigenous PHE- and BP-degrading strain,Ralstonia pickettiiM1, was isolated via a cultivation-dependent method, and its role in PHE and BP degradation was confirmed by enrichment of the 16S rRNA gene and distinctive dioxygenase genes in the DNA-SIP experiment. Our study has successfully established a program for the application of DNA-SIP in the isolation of the active functional degraders from an environment. It also deepens our insight into the diversity of indigenous PHE- and BP-degrading communities.IMPORTANCEThe comprehensive treatment of wastewater in industrial parks suffers from the presence of multiple persistent organic pollutants (POPs), such as polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), which reduce the activity of activated sludge and are difficult to eliminate. Characterizing and applying active bacterial degraders metabolizing multiple POPs therefore helps to reveal the mechanisms of synergistic metabolism and to improve wastewater treatment efficiency in industrial parks. To date, SIP studies have successfully investigated the biodegradation of PAHs or PCBs in real-world habitats. DNA-SIP facilitates the isolation of target microorganisms that pose environmental concerns. Here, an indigenous phenanthrene (PHE)- and biphenyl (BP)-degrading strain in wastewater,Ralstonia pickettiiM1, was isolated via a cultivation-dependent method, and its role in PHE and BP degradation was confirmed by DNA-SIP. Our study provides a routine protocol for the application of DNA-SIP in the isolation of the active functional degraders from an environment.


2013 ◽  
Vol 80 (2) ◽  
pp. 618-628 ◽  
Author(s):  
Tony Gutierrez ◽  
Glenn Rhodes ◽  
Sara Mishamandani ◽  
David Berry ◽  
William B. Whitman ◽  
...  

ABSTRACTPyrosequencing of the bacterial community associated with a cosmopolitan marine diatom during enrichment with crude oil revealed severalArenibacterphylotypes, of which one (OTU-202) had become significantly enriched by the oil. Since members of the genusArenibacterhave not been previously shown to degrade hydrocarbons, we attempted to isolate a representative strain of this genus in order to directly investigate its hydrocarbon-degrading potential. Based on 16S rRNA sequencing, one isolate (designated strain TG409T) exhibited >99% sequence identity to three type strains of this genus. On the basis of phenotypic and genotypic characteristics, strain TG409Trepresents a novel species in the genusArenibacter, for which the nameArenibacter algicolasp. nov. is proposed. We reveal for the first time that polycyclic aromatic hydrocarbon (PAH) degradation is a shared phenotype among members of this genus, indicating that it could be used as a taxonomic marker for this genus. Kinetic data for PAH mineralization rates showed that naphthalene was preferred to phenanthrene, and its mineralization was significantly enhanced in the presence of glass wool (a surrogate for diatom cell surfaces). During enrichment on hydrocarbons, strain TG409Temulsifiedn-tetradecane and crude oil, and cells were found to be preferentially attached to oil droplets, indicating an ability by the strain to express cell surface amphiphilic substances (biosurfactants or bioemulsifiers) as a possible strategy to increase the bioavailability of hydrocarbons. This work adds to our growing knowledge on the diversity of bacterial genera in the ocean contributing to the degradation of oil contaminants and of hydrocarbon-degrading bacteria found living in association with marine eukaryotic phytoplankton.


Sign in / Sign up

Export Citation Format

Share Document