scholarly journals Synergistic Competitive Inhibition of Ferrous Iron Oxidation by Thiobacillus ferrooxidans by Increasing Concentrations of Ferric Iron and Cells

1989 ◽  
Vol 55 (10) ◽  
pp. 2588-2591 ◽  
Author(s):  
Hector M. Lizama ◽  
Isamu Suzuki
1998 ◽  
Vol 23 (7-8) ◽  
pp. 427-431 ◽  
Author(s):  
D.S Savić ◽  
V.B Veljković ◽  
M.L Lazić ◽  
M.M Vrvić ◽  
J.I Vučetić

2005 ◽  
Vol 51 (6-7) ◽  
pp. 59-68 ◽  
Author(s):  
D. Park ◽  
D.S. Lee ◽  
J.M. Park

Microbial oxidation of ferrous iron may be available alternative method of producing ferric iron, which is a reagent used for removal of H2S from biogas. In this study, a submerged membrane bioreactor (MBR) system was employed to oxidize ferrous iron to ferric iron. In the submerged MBR system, we could keep high concentration of iron-oxidizing bacteria and high oxidation rate of ferrous iron. There was membrane fouling caused by chemical precipitates such as K-jarosite and ferric phosphate. However, a strong acidity (pH 1.75) of solution and low ferrous iron concentration (below 3000 mg/l) significantly reduced the fouling of membrane module during the bioreactor operation. A fouled membrane module could be easily regenerated with a 1 M of sulfuric acid solution. In conclusion, the submerged MBR could be used for high-density culture of iron-oxidizing bacteria and for continuous ferrous iron oxidation. As far as our knowledge concerns, this is the first study on the application of a submerged MBR to high acidic conditions (below pH 2).


2007 ◽  
Vol 20-21 ◽  
pp. 447-451 ◽  
Author(s):  
Jochen Petersen ◽  
Tunde Victor Ojumu

In this study the results from a systematic study of the oxidation kinetics of Leptospirillum ferriphilum in continuous culture at total iron concentrations ranging from 2 to12 g/L are reported. In all experiments the steady-state concentrations of ferrous iron were small and comparable, and at least 97% of was as ferric. Surprisingly, the specific ferrous iron utilisation rate decreased with increasing total iron concentration, while yield coefficients increased. It was noted that the biomass concentration in the reactor (as measured by both CO2 uptake rate and cell counts) dramatically increased with increasing total iron concentrations, whereas it stayed more or less the same over a wide range of dilution rates at a given total iron concentration. The experimental data was re-analysed in terms of ferrous iron kinetics using Monod kinetics with a ferric inhibition term. The results confirm that the maximum specific iron utilisation rate is itself a function of ferric iron concentration, declining with increasing concentration. It thus appears that high concentrations of ferric iron stimulate microbial growth while at the same time inhibiting the rate of ferrous iron oxidation. It is postulated that these phenomena are related, i.e. that more growth occurs to reduce the load on the individual cell, possibly by sharing some metabolic functions.


2009 ◽  
Vol 71-73 ◽  
pp. 259-262 ◽  
Author(s):  
Tunde Victor Ojumu ◽  
Jochen Petersen

The kinetics of microbial ferrous-iron oxidation have been well studied as it is a critical sub-process in bioleaching of sulphide minerals. Exhaustive studies in continuous culture have been carried out recently, investigating the effects of conditions relevant to heap bioleaching on the microbial ferrous-iron oxidation by Leptospirillum ferriphilum [1-3]. It was postulated that ferric-iron, which is known to be inhibitory, also acts as a stress stimulus, promoting microbial growth at higher total iron concentration. This paper investigates this phenomenon further, by comparing tests run with pure ferrous-iron feeds against those where the feed is partially oxidised to ferric at comparable concentrations. The findings clearly suggest that, contrary to reactor theory, it is indeed ferrous iron concentration in the reactor feed that determines biomass concentration and that ferric iron concentration has little effect on microbial growth. Further mathematical analysis shows that the phenomenon can be explained on the basis of the Pirt equation and the particular reaction conditions employed in the test work.


2017 ◽  
Vol 262 ◽  
pp. 471-475
Author(s):  
Aleksander Bulaev

Resistance of microorganisms predominating in biohydrometallurgical processes including bacteria of the genus Sulfobaсillus and archaea of the genus Acidiplasma to ferric iron ions was studied. Capabilities of the strains for growth and ferrous iron oxidation in the media containing high concentrations of ferric iron ions (of 250 to 1000 mM) were evaluated. Ferric iron ions significantly inhibited oxidative activity and growth of the studied microorganisms. It was revealed that bacteria of the genus Sulfobacillus were not able to oxidize ferrous iron actively when ferric iron concentration exceeded 500 mM, whereas archaea of the genus Acidiplasma completely oxidized ferrous iron in the medium containing 1000 mM of Fe3+. Growth of the microorganisms was inhibited by relatively low concentrations of ferric iron. Microorganisms did not grow in the medium containing more than 750 mM of Fe3+ and cells of all studied strains lysed in presence of high concentrations of ferric iron. It was shown, that archaea of the genus Acidiplasma of the family Ferroplasmaceae were more resistant to high concentrations of ferric iron than bacteria of the genus Sulfobacillus. The results obtained are important for understanding of the regularities of the formation of microbial communities performing technological processes.


Sign in / Sign up

Export Citation Format

Share Document