scholarly journals Manganese regulation of manganese peroxidase expression and lignin degradation by the white rot fungus Dichomitus squalens.

1991 ◽  
Vol 57 (8) ◽  
pp. 2240-2245 ◽  
Author(s):  
F H Périé ◽  
M H Gold
Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1526
Author(s):  
Joanna E. Kowalczyk ◽  
Shreya Saha ◽  
Miia R. Mäkelä

Dichomitus squalens is an emerging reference species that can be used to investigate white-rot fungal plant biomass degradation, as it has flexible physiology to utilize different types of biomass as sources of carbon and energy. Recent comparative (post-) genomic studies on D. squalens resulted in an increasingly detailed knowledge of the genes and enzymes involved in the lignocellulose breakdown in this fungus and showed a complex transcriptional response in the presence of lignocellulose-derived compounds. To fully utilize this increasing amount of data, efficient and reliable genetic manipulation tools are needed, e.g., to characterize the function of certain proteins in vivo and facilitate the construction of strains with enhanced lignocellulolytic capabilities. However, precise genome alterations are often very difficult in wild-type basidiomycetes partially due to extremely low frequencies of homology directed recombination (HDR) and limited availability of selectable markers. To overcome these obstacles, we assessed various Cas9-single guide RNA (sgRNA) ribonucleoprotein (RNP) -based strategies for selectable homology and non-homologous end joining (NHEJ) -based gene editing in D. squalens. We also showed an induction of HDR-based genetic modifications by using single-stranded oligodeoxynucleotides (ssODNs) in a basidiomycete fungus for the first time. This paper provides directions for the application of targeted CRISPR/Cas9-based genome editing in D. squalens and other wild-type (basidiomycete) fungi.


Holzforschung ◽  
1999 ◽  
Vol 53 (2) ◽  
pp. 161-166 ◽  
Author(s):  
Martin Hofrichter ◽  
Katrin Scheibner ◽  
Friedemann Bublitz ◽  
Ivonne Schneegaß ◽  
Dirk Ziegenhagen ◽  
...  

SummaryManganese peroxidase preparations (MnP) from the white-rot fungusNematoloma frowardiiwere able to release14CO2directly from14C-labeled milled wheat straw (MWS; total lignin fraction) and milled straw lignin (MSL; dioxane soluble part of MWS). Apart from the formation of14CO2(4–10 %) the treatment of insoluble MWS and MSL with MnP resulted in the formation of water-soluble14C-lignin fragments (lignin solubilization, 14–25%). Analyses with gel permeation chromatography (GPC) demonstrated the formation of lignin fragments with predominant molecular masses around 1 kDa. The extent of MWS mineralization and solubilization was enhanced in the presence of reduced glutathione (GSH) acting as thiol mediator, whereas MSL mineralization was not stimulated by GSH. The principle of direct extracellular mineralization of lignin catalyzed by the MnP system may make a significant contribution to the formation of carbon dioxide in lignincellulose containing habitats.


2018 ◽  
Vol 6 (3) ◽  
pp. 2878-2882 ◽  
Author(s):  
Mila Marinović ◽  
Paula Nousiainen ◽  
Adiphol Dilokpimol ◽  
Jussi Kontro ◽  
Robin Moore ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document