scholarly journals The glucose transport system of the hyperthermophilic anaerobic bacterium Thermotoga neapolitana

1996 ◽  
Vol 62 (8) ◽  
pp. 2915-2918
Author(s):  
MY Galperin ◽  
KM Noll ◽  
AH Romano

The glucose transport system of the extremely thermophilic anaerobic bacterium Thermotoga neapolitana was studied with the nonmetabolizable glucose analog 2-deoxy-D-glucose (2-DOG). T. neapolitana accumulated 2-DOG against a concentration gradient in an intracellular free sugar pool that was exchangeable with external source of energy, such as pyruvate, and was inhibited by arsenate and gramicidin D. There was no phosphoenolpyruvate-dependent phosphorylation of glucose, 2-DOG, or fructose by cell extracts or toluene-treated cells, indicating the absence of a phosphoenolpyruvate:sugar phosphotransferase system. These data indicate that D-glucose is taken up by T. neapolitana via an active transport system that is energized by an ion gradient generated by ATP, derived from substrate-level phosphorylation.

1982 ◽  
Vol 28 (2) ◽  
pp. 190-199 ◽  
Author(s):  
Christian Vadeboncoeur ◽  
Luc Trahan

A spontaneous mutant of Streptococcus salivarius ATCC 25975 was isolated by inoculating an agar medium containing 11 mM lactose and 0.5 mM 2-deoxyglucose. This mutant grew poorly on 5 mM glucose but almost as well as the parental strain on 110 mM glucose. Uptake of 2-deoxyglucose was abolished by the mutation, and phosphoenolpyruvate:glucose phosphotransferase activity could not be detected with toluenized cells under normal conditions when the glucose concentration was below 5 mM. Data from growth experiments, glycolysis, and uptake studies indicated the presence of a second phosphoenolpyruvate: glucose phosphotransferase system that could catalyze the phosphorylation of α-methyl glucoside. The activity of this system was detected by a spectrophotometric assay coupled with lactate dehydrogenase and by a radioactive isotope method using methyl α-D-[U-14C]glucoside. The phosphorylation was phosphoenolpyruvate dependent. The apparent Km of the system for glucose and α-methyl glucoside was approximately 20 mM. Studies with energy poisons ruled out the possibility of an active transport system, and accumulation of α-methyl glucoside argued against facilitated diffusion. It was concluded that the other glucose transport system which allowed growth of the mutant strain of S. salivarius was a second phosphoenolpyruvate:glucose phosphotransferase system.


1997 ◽  
Vol 63 (3) ◽  
pp. 969-972
Author(s):  
MY Galperin ◽  
KM Noll ◽  
AH Romano

Regulation of the beta-galactoside transport system in response to growth substrates in the extremely thermophilic anaerobic bacterium Thermotoga neapolitana was studied with the nonmetabolizable analog methyl-beta-D-thiogalactopyranoside (TMG) as the transport substrate. T. neapolitana cells grown on galactose or lactose accumulated TMG against a concentration gradient in an intracellular free sugar pool that was exchangeable with external galactose or lactose and showed induced levels of beta-galactosidase. Cells grown on glucose, maltose, or galactose plus glucose showed no capacity to accumulate TMG, though these cells carried out active transport of the nonmetabolizable glucose analog 2-deoxy-D-glucose. Glucose neither inhibited TMG uptake nor caused efflux of preaccumulated TMG; rather, glucose promoted TMG uptake by supplying metabolic energy. These data show that beta-D-galactosides are taken up by T. neapolitana via an active transport system that can be induced by galactose or lactose and repressed by glucose but which is not inhibited by glucose. Thus, the phenomenon of catabolite repression is present in T. neapolitana with respect to systems catalyzing both the transport and hydrolysis of beta-D-galactosides, but inducer exclusion and inducer expulsion, mechanisms that regulate permease activity, are not present. Regulation is manifest at the level of synthesis of the beta-galactoside transport system but not in the activity of the system.


1995 ◽  
Vol 14 (2) ◽  
pp. 263-275 ◽  
Author(s):  
D M Thomas ◽  
S D Rogers ◽  
M W Sleeman ◽  
G M Pasquini ◽  
F R Bringhurst ◽  
...  

ABSTRACT This study characterizes the actions of insulin and parathyroid hormone (PTH) on the glucose transport system in the rat osteogenic sarcoma cell line UMR 106–01, which expresses a number of features of the osteoblast phenotype. Using [1,2-3H]2-deoxyglucose (2-DOG) as a label, UMR 106–01 cells were shown to possess a glucose transport system which was enhanced by insulin. In contrast, PTH influenced glucose transport in a biphasic manner with a stimulatory effect at 1 h and a more potent inhibitory effect at 16 h on basal and insulin-stimulated 2-DOG transport. To explore the mechanism of PTH action, a direct agonist of cAMP-dependent protein kinase (PKA) was tested. 8-Bromo-cAMP had no acute stimulatory effect but inhibited basal and insulin-stimulated 2-DOG transport at 16 h. This result suggested that the prolonged, but not the acute, effect of PTH was mediated by the generation of cAMP. Further studies with the cell line UMR 4–7, a UMR 106–01 clone stably transfected with an inducible mutant inactive regulatory subunit of PKA, confirmed that the inhibitory but not the stimulatory effect of PTH was mediated by the PKA pathway. Northern blot data indicated that the prolonged inhibitory effects of PTH and 8-bromo-cAMP on glucose transport were likely to be mediated in part by reduction in the levels of GLUT1 (HepG2/brain glucose transporter) mRNA.


1975 ◽  
Vol 145 (3) ◽  
pp. 417-429 ◽  
Author(s):  
J E Barnett ◽  
G D Holman ◽  
R A Chalkley ◽  
K A Munday

6-O-methyl-, 6-O-propyl-, 6-O-pentyl- and 6-O-benzyl-D-galactose, and 6-O-methyl-, 6-O-propyl- and 6-O-pentyl-D-glucose inhibit the glucose-transport system of the human erythrocyte when added to the external medium. Penetration of 6-O-methyl-D-galactose is inhibited by D-glucose, suggesting that it is transported by the glucose-transport system, but the longer-chain 6-O-alkyl-D-galactoses penetrate by a slower D-glucose-insensitive route at rates proportional to their olive oil/water partition coefficients. 6-O-n-Propyl-D-glucose and 6-O-n-propyl-D-galactose do not significantly inhibit L-sorbose entry or D-glucose exit when present only on the inside of the cells whereas propyl-beta-D-glucopyranoside, which also penetrates the membrane slowly by a glucose-insensitive route, only inhibits L-sorbose entry or D-glucose exit when present inside the cells, and not when on the outside. The 6-O-alkyl-D-galactoses, like the other nontransported C-4 and C-6 derivatives, maltose and 4,6-O-ethylidene-D-glucose, protect against fluorodinitrobenzene inactivation, whereas propyl beta-D-glucopyranoside stimulates the inactivation. Of the transported sugars tested, those modified at C-1, C-2 and C-3 enhance fluorodinitrobenzene inactivation, where those modified at C-4 and C-6 do not, but are inert or protect against inactivation. An asymmetric mechanism is proposed with two conformational states in which the sugar binds to the transport system so that C-4 and C-6 are in contact with the solvent on the outside and C-1 is in contact with the solvent on the inside of the cell. It is suggested that fluorodinitrobenzene reacts with the form of the transport system that binds sugars at the inner side of the membrane. An Appendix describes the theoretical basis of the experimental methods used for the determination of kinetic constants for non-permeating inhibitors.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jinyang Li ◽  
Qian Liu ◽  
Jingen Li ◽  
Liangcai Lin ◽  
Xiaolin Li ◽  
...  

Abstract Background Low- and high-affinity glucose transport system is a conserved strategy of microorganism to cope with environmental glucose fluctuation for their growth and competitiveness. In Neurospora crassa, the dual-affinity glucose transport system consists of a low-affinity glucose transporter GLT-1 and two high-affinity glucose transporters HGT-1/HGT-2, which play diverse roles in glucose transport, carbon metabolism, and cellulase expression regulation. However, the regulation of this dual-transporter system in response to environmental glucose fluctuation is not yet clear. Results In this study, we report that a regulation module consisting of a downstream transcription factor COL-26 and an upstream non-transporting glucose sensor RCO-3 regulates the dual-affinity glucose transport system in N. crassa. COL-26 directly binds to the promoter regions of glt-1, hgt-1, and hgt-2, whereas RCO-3 is an upstream factor of the module whose deletion mutant resembles the Δcol-26 mutant phenotypically. Transcriptional profiling analysis revealed that Δcol-26 and Δrco-3 mutants had similar transcriptional profiles, and both mutants had impaired response to a glucose gradient. We also showed that the AMP-activated protein kinase (AMPK) complex is involved in regulation of the glucose transporters. AMPK is required for repression of glt-1 expression in starvation conditions by inhibiting the activity of RCO-3. Conclusions RCO-3 and COL-26 form an external-to-internal module that regulates the glucose dual-affinity transport system. Transcription factor COL-26 was identified as the key regulator. AMPK was also involved in the regulation of the dual-transporter system. Our findings provide novel insight into the molecular basis of glucose uptake and signaling in filamentous fungi, which may aid in the rational design of fungal strains for industrial purposes.


1995 ◽  
Vol 270 (50) ◽  
pp. 30199-30204 ◽  
Author(s):  
Shichun Bao ◽  
Robert M. Smith ◽  
Leonard Jarett ◽  
W. Timothy Garvey

Sign in / Sign up

Export Citation Format

Share Document