glucose fluctuation
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 51)

H-INDEX

17
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Xing Wei ◽  
Andrew Chia Hao Chang ◽  
Haishuang Chang ◽  
Shan Xu ◽  
Yilin Xue ◽  
...  

Abstract Background: Diabetic cardiomyopathy (DCM) is a complex multifaceted disease responsible for elevated hospitalization and mortality in patients with diabetes mellitus (DM). DCM patients exhibit subclinical diastolic dysfunction, progression towards systolic impairment, and abnormal electrophysiology. Hypoglycemia events that occur spontaneously or due to excess insulin administration threaten the lives of DM patients – with the increased risk of sudden death. However, the molecular underpinnings of hypoglycemia-aggravated DCM remain to be elucidated. Methods and Results: Here we used the established streptozotocin-induced type 1 diabetic cardiomyopathy (T1 DCM) murine model to investigate how hypoglycemia aggravates DCM progression. We showed that chronic hyper- or hypoglycemic challenges dampened cardiac diastolic function in vivo as well as myocardial contractility and calcium handling in isolated cardiomyocytes. Similar contractile defects were recapitulated using neonatal mouse ventricular myocytes (NMVMs) under glucose fluctuation challenges. Using immunoprecipitation mass spectrometry, we identified and validated that hypoglycemia challenge activates the MEK/ERK and PI3K/Akt pathways which results in Cx43 phosphorylation by Src protein in cardiomyocytes. Cx43 dissociation and accumulation at mitochondrial inner membrane was confirmed both in human and murine cardiomyocytes. To determine causality, we overexpressed a mitochondrial targeting Cx43 (mtCx43) using AAV2. At normal blood glucose levels, mtCx43 overexpression recapitulated cardiomyocytes contractile deficiencies, cardiac diastolic dysfunction as well as aberrant electrophysiology both in vitro as well as in vivo. Conclusions: Hypoglycemia challenges results in the accumulation of mtCx43 through the MEK/ERK/Src and PI3K/Akt/Src pathways. We provide evidence that Cx43 mislocalization is present in diabetes mellitus patient hearts, STZ-induced DCM murine model, and glucose fluctuation challenged NMVMs. Mechanistically, we demonstrated that mtCx43 is responsible for inducing aberrant contraction and disrupts electrophysiology in cardiomyocytes and our results support targeting of mtCx43 in treating DCM. Translational perspective: Severe hypoglycemia drives cardiac dysfunction and aggressive ventricular arrhythmias in patients with DCM that leads to sudden cardiac death. Here we demonstrate that Cx43 mislocalization to mitochondria occurs upon hypoglycemic challenge and mtCx43 accumulation is responsible for cardiac diastolic dysfunction, cardiomyocyte contractile dysfunction, and aberrant electrophysiology in vivo. Our findings give support for therapeutic targeting of MEK/ERK/Src and PI3K/Akt/Src pathways to prevent mtCx43-driven DCM.


2021 ◽  
Vol 2021 ◽  
pp. 1-25
Author(s):  
Xiaomei Fu ◽  
Jianfang Zhang ◽  
Xuanjie Huang ◽  
Zhifeng Mo ◽  
Ziyang Sang ◽  
...  

It has been considered that glucose fluctuation (GF) plays a role in renal injury and is related to diabetic nephropathy (DN) development. But the mechanism is still unclear. Aerobic glycolysis has become a topical issue in DN in recent years. There is an internal connection between GF, aerobic glycolysis, and DN. Curcumin (Cur) is a principal curcuminoid of turmeric and possesses specific protective properties in kidney functions. Cur also participates in the regulation of aerobic glycolysis switch. In this study, we first measured the levels of aerobic glycolysis and evaluated Cur’s inhibitory ability in a cell model of HEK-293 under the condition of oscillating high glucose. The results indicated that GF exacerbated inflammation injury, oxidative stress, and apoptosis in HEK-293 cell, while Cur alleviated this cytotoxicity induced by GF. We found that GF increased aerobic glycolysis in HEK-293 cells and Cur presented a dose-dependent weakening effect to this exacerbation. Next, we built a panel of 17 miRNAs and 8 lncRNAs that were previously reported to mediate the Warburg effect. Our RT-qPCR results indicated that GF reduced the miR-489 content in the HEK-293 cell model and Cur could prevent this downregulation. Then, we planned to explore the character of miR-489 in Cur-triggered attenuation of the Warburg effect under GF condition. Our findings presented that Cur prevented GF-triggered aerobic glycolysis by upregulating miR-489 in HEK-293 cells. Next, we choose the miR-489/LDHA axis for further investigation. We confirmed that Cur prevented GF-triggered aerobic glycolysis via the miR-489/LDHA axis in HEK-293 cells. In conclusion, this study presented that Cur prevented GF-triggered renal injury by restraining aerobic glycolysis via the miR-489/LDHA axis in the HEK-293 cell model.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2379
Author(s):  
Futoshi Eto ◽  
Kazuo Washida ◽  
Masaki Matsubara ◽  
Hisashi Makino ◽  
Akio Takahashi ◽  
...  

The impact of glucose fluctuation on intracranial artery stenosis remains to be elucidated. This study aimed to investigate the association between glucose fluctuation and intracranial artery stenosis. This was a cross-sectional study of type 2 diabetes mellitus (T2DM) patients equipped with the FreeStyle Libre Pro continuous glucose monitoring system (Abbott Laboratories) between February 2019 and June 2020. Glucose fluctuation was evaluated according to the standard deviation (SD) of blood glucose, coefficient of variation (%CV), and mean amplitude of glycemic excursions (MAGE). Magnetic resonance angiography was used to evaluate the degree of intracranial artery stenosis. Of the 103 patients, 8 patients developed severe internal carotid artery (ICA) siphon stenosis (≥70%). SD, %CV, and MAGE were significantly higher in the severe stenosis group than in the non-severe stenosis group (<70%), whereas there was no significant intergroup difference in the mean blood glucose and HbA1c. Multivariable logistic regression analysis adjusted for sex showed that SD, %CV, and MAGE were independent factors associated with severe ICA siphon stenosis. In conclusion, glucose fluctuation is significantly associated with severe ICA siphon stenosis in T2DM patients. Thus, glucose fluctuation can be a target of preventive therapies for intracranial artery stenosis and ischemic stroke.


Sign in / Sign up

Export Citation Format

Share Document