Effect of Various Ions, pH, and Osmotic Pressure on Oxidation of Elemental Sulfur by Thiobacillus thiooxidans

1999 ◽  
Vol 65 (11) ◽  
pp. 5163-5168 ◽  
Author(s):  
Isamu Suzuki ◽  
Douglas Lee ◽  
Byron Mackay ◽  
Lesia Harahuc ◽  
Jae Key Oh

ABSTRACT The oxidation of elemental sulfur by Thiobacillus thiooxidans was studied at pH 2.3, 4.5, and 7.0 in the presence of different concentrations of various anions (sulfate, phosphate, chloride, nitrate, and fluoride) and cations (potassium, sodium, lithium, rubidium, and cesium). The results agree with the expected response of this acidophilic bacterium to charge neutralization of colloids by ions, pH-dependent membrane permeability of ions, and osmotic pressure.

1997 ◽  
Vol 48 (4) ◽  
pp. 497 ◽  
Author(s):  
Sholeh ◽  
Rod D. B. Lefroy ◽  
Graeme J. Blair

Elemental sulfur (S) has many attractions as a fertiliser but it must be oxidised to sulfate before it is plant available. Two laboratory incubation experiments with a high S sorbing basaltic soil (Haplohumult) from Walcha, New South Wales, are reported here. The first experiment was conducted to study the effect of ? P and other nutrients on the oxidation of elemental S and the growth of Thiobacillus thiooxidans. The second experiment studied the effect of phosphorus (P) rate, elemental S particle size, and elemental S form on the oxidation of elemental S at different times. There were significant differences between treatments in the percentage and amount of elemental S oxidised, with the lowest oxidation occurring during the 6-week incubation in the P treatment, which represented 1�8% of the applied S compared with 16�0% when all nutrients were supplied. There was a significant linear relationship between T. thiooxidans population at the end of the incubation period and the amount of elemental S oxidised. The oxidation of elemental S was higher when fine (50?150 �m) particle size elemental S was used, compared with coarse (150?250 �m) elemental S. There was no clear difference in oxidation rate between ground and recrystallised elemental S. The S oxidation rates recorded in these experiments were compared with those predicted by an S oxidation model and found to be in close agreement.


1996 ◽  
Vol 18 (5) ◽  
pp. 505-508 ◽  
Author(s):  
Laura Briand ◽  
Horacio Thomas ◽  
Edgardo Donati

1991 ◽  
Vol 37 (3) ◽  
pp. 182-187 ◽  
Author(s):  
Hector M. Lizama ◽  
Isamu Suzuki

The oxidation of elemental sulfur by two strains of Thiobacillus thiooxidans was studied by measuring the rate of O2 consumption at various concentrations of substrate and cells. In both the laboratory strain ATCC 8085 and the mine isolate SM-6, sulfur oxidation was competitively inhibited by T. thiooxidans cells; the Ki values were 0.65 and 0.05 mg wet cells∙mL−1, respectively. The rate constants were 500 and 143 μM O2∙min−1∙mg wet cells−1∙mL−1 and the Km values for sulfur concentration were 7.5 and 0.32% pulp density, respectively. Mine isolate SM-6 was used also to study pyrite (FeS2) oxidation by measuring the rate of O2 consumption. Oxidation of both washed and unwashed pyrite samples was competitively inhibited by increasing concentrations of cells; with each sample the Ki values was 0.05 mg wet cells∙mL−1. The rate constants for each sample were also the same (100 μM O2∙min−1∙mg wet cells−1∙mL−1), but the Km values were different (1.11% pulp density for washed pyrite and 2.81% pulp density for unwashed pyrite). Based on the rate of Fe solubilization from the washed pyrite sample, T. thiooxidans cells oxidized the sulfide released from pyrite dissolution beyond the oxidation state of elemental sulfur. Key words: Thiobacillus thiooxidans, sulfur, pyrite, oxidation, kinetics.


Author(s):  
Suguru Miyauchi ◽  
Shuji Yamada ◽  
Shintaro Takeuchi ◽  
Asahi Tazaki ◽  
Takeo Kajishima

AbstractA concise and accurate prediction method is required for membrane permeability in chemical engineering and biological fields. As a preliminary study on this topic, we propose the concentration polarization model (CPM) of the permeate flux and flow rate under dominant effects of viscosity and solute diffusion. In this model, concentration polarization is incorporated for the solution flow through a semi-permeable membrane (i.e., permeable for solvent but not for solute) in a circular pipe. The effect of the concentration polarization on the flow field in a circular pipe under a viscous-dominant condition (i.e., at a low Reynolds number) is discussed by comparing the CPM with the numerical simulation results and infinitesimal Péclet number model (IPM) for the membrane permeability, strength of the osmotic pressure, and Péclet number. The CPM and IPM are confirmed to be a reasonable extension of the model for a pure fluid, which was proposed previously. The application range of the IPM is narrow because the advection of the solute concentration is not considered, whereas the CPM demonstrates superior applicability in a wide range of parameters, including the permeability coefficient, strength of the osmotic pressure, and Péclet number. This suggests the necessity for considering concentration polarization. Although the mathematical expression of the CPM is more complex than that of the IPM, the CPM exhibits a potential to accurately predict the permeability parameters for a condition in which a large permeate flux and osmotic pressure occur.


1993 ◽  
Vol 39 (12) ◽  
pp. 1166-1168 ◽  
Author(s):  
C. W. Chan ◽  
Isamu Suzuki

A sensitive and quantitative analytical method for determining elemental sulfur in a biological system was developed. Elemental sulfur was determined after extraction with petroleum ether by cyanolysis and ferric thiocyanate color formation in acetone. The method was successfully applied to show that sulfide was oxidized by Thiobacillus thiooxidans to elemental sulfur nearly stoichiometrically when further oxidation of elemental sulfur was inhibited by N-ethylmaleimide.Key words: elemental sulfur, quantitative analysis, sulfide oxidation, Thiobacillus thiooxidans.


Sign in / Sign up

Export Citation Format

Share Document